Bell test

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CSTAR (talk | contribs) at 23:25, 28 January 2005 (Notable experiments: There authors claim, not some clueless bystander). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Jump to navigation Jump to search

Bell's Theorem states that a "Bell inequality" must be obeyed under any local hidden variable theory but is violated under quantum mechanics (QM). The term "Bell inequality" can mean any one of a number of inequalities — in practice, in real experiments, the CHSH or CH74 inequality, not the original one derived by John Bell. It places restrictions on the statistical results of experiments on pairs of particles that have taken part in a quantum-mechanical interaction and then separated. A Bell test experiment is one designed to test whether or not the real world obeys a Bell inequality. Such experiments fall into two classes, depending on whether the analyser used has one or two output channels.

Conduct of Bell test experiments

A typical CHSH (two-channel) experiment

Scheme of a "two-channel" Bell test
The source S produces pairs of "photons", sent in opposite directions. Each photon encounters a two-channel polariser whose orientation can be set by the experimenter. Emerging signals from each channel are detected and coincidences counted by the coincidence monitor CM.

In practice most actual experiments have used light, assumed to be emitted in the form of particle-like photons, rather than the atoms that Bell originally had in mind. The property of interest is, in the best known experiments (Aspect, 1981, 1982a,b), the polarisation direction, though other properties can be used. The diagram shows a typical optical experiment of the two-channel kind for which Alain Aspect set a precedent in 1982 (Aspect, 1982a). Coincidences (simultaneous detections) are recorded, the results being categorised as '++', '+−', '−+' or '−−' and corresponding counts accumulated.

Four separate subexperiments are conducted, corresponding to the four terms E(a, b) in the test statistic S ((2) below). The settings a, a′, b and b′ are generally in practice chosen to be 0, 45°, 22.5° and 67.5° respectively — the "Bell test angles" — these being the ones for which the QM formula gives the greatest violation of the inequality.

For each selected value of a and b, the numbers of coincidences in each category (N++, N--, N+- and N-+) are recorded. The experimental estimate for E(a, b) is then calculated as:

(1)        E = (N++ + N--N+-N-+)/(N++ + N-- + N+- + N-+).

Once all four E’s have been estimated, an experimental estimate of the test statistic

(2)       S = E(a, b) − E(a, b′) + E(a′, b) + E(ab′)

can be found. If S is numerically greater than 2 it has infringed the CHSH inequality. The experiment is declared to have supported the QM prediction and ruled out all local hidden variable theories.

A strong assumption has had to be made, however, to justify use of expression (2). It has been assumed that the sample of detected pairs is representative of the pairs emitted by the source. That this assumption may not be true comprises the fair sampling loophole. No absolute check on its validity is feasible.

The derivation of the inequality is given in the CHSH Bell test page.

A typical CH74 (single-channel) experiment

File:Single-channel Bell test.png
Setup for a "single-channel" Bell test
The source S produces pairs of "photons", sent in opposite directions. Each photon encounters a single channel (e.g. "pile of plates") polariser whose orientation can be set by the experimenter. Emerging signals are detected and coincidences counted by the coincidence monitor CM.

Prior to 1982 all actual Bell tests used "single-channel" polarisers and variations on an inequality designed for this setup. The latter is described in Clauser, Horne, Shimony and Holt's much-cited 1969 article (Clauser, 1969) as being the one suitable for practical use. As with the CHSH test, there are four subexperiments in which each polariser takes one of two possible settings, but in addition there are other subexperiments in which one or other polariser or both are absent. Counts are taken as before and used to estimate the test statistic

(3)       S = (N(a, b) − N(a, b′) + N(a′, b) + N(a′, b′) − N(a′, ∞) − N(∞, b)) / N(∞, ∞),

where the symbol ∞ indicates absence of a polariser.

If S exceeds 0 then the experiment is declared to have infringed Bell's inequality and hence to have "refuted local realism".

The only theoretical assumption (other than Bell's basic ones of the existence of local hidden variables) that has been made in deriving (3) is that when a polariser is inserted the probability of detection of any given photon is never increased: there is "no enhancement". The derivation of this inequality is given in the page on Clauser and Horne's 1974 Bell test.

Experimental assumptions

In addition to the theoretical assumptions made, there are practical ones. There may, for example, be a number of "accidental coincidences" in addition to those of interest. It is assumed that no bias is introduced by subtracting their estimated number before calculating S, but that this is so is not considered by some to be obvious. There may be synchronisation problems — ambiguity in recognising pairs due to the fact that in practice they will not be detected at exactly the same time.

Nevertheless, despite all these deficiences of the actual experiments, one striking fact emerges: the results are, to a very good approximation, what quantum mechanics predicts. If imperfect experiments give us such excellent overlap with quantum predictions, most working quantum physicists would agree with John Bell in expecting that, when a perfect Bell test is done, the Bell inequalities will still be violated. This attitude has lead to the emergence of a new sub-field of physics which is now known as quantum information theory. One of the main achievements of this new branch of physics is showning that violation of Bell's inequalities leads to the possiblity of a secure information transfer, which utilizes the so-called quantum cryptography (involving entangled states of pairs of particles).

Notable experiments

There have now been a great number of Bell test experiments conducted. The authors of these experiments claim to have confirmed quantum theory and shown results that cannot be explained under local hidden variable theories. Some of the best known:

Freedman and Clauser, 1972

This was the first actual Bell test, using Freedman's inequality, a variant on the CH74 inequality.

Aspect, 1981-2

Aspect and his team at Orsay, Paris, conducted three Bell tests using calcium cascade sources. The first and last used the CH74 inequality. The second was the first application of the CHSH inequality, the third the famous one (originally suggested by John Bell) in which the choice between the two settings on each side was made during the flight of the photons.

Tittel and the Geneva group, 1998

The Geneva 1998 Bell test experiments showed that distance did not destroy the "entanglement". Light was sent in fibre optic cables over distances of several kilometers before it was analysed. As with almost all Bell tests since about 1985, a "parametric down-conversion" (PDC) source was used.

Weihs' experiment under "strict Einstein locality" conditions

In 1998 Gregor Weihs and a team at Innsbruck, lead by Anton Zeilinger, conducted an ingenious experiment that closed the "locality" loophole, improving on Aspect's of 1982. The choice of detector was made using a quantum process to ensure that is was random. This test violated the CHSH inequality by over 30 standard deviations, the coincidence curves agreeing with those predicted by quantum theory.

References