Negative temperature

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Beland (talk | contribs) at 07:11, 14 August 2005 ({{cleanup-verify}}, {{expert}}). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Jump to navigation Jump to search

In physics, negative temperature is a concept that occurs in some systems and specific definitions of temperature. A system with a negative temperature is not colder than absolute zero, but rather it is, in a sense, hotter than "infinite" temperature.

Heat and molecular energy distribution

Negative temperatures can only be understood within the context of kinetic theory. At low temperatures, the component particles of a system tend to move to their lowest energy states as described by the Maxwell-Boltzmann distribution.

As the temperature is increased, particles move into higher and higher energy states, and as the temperature becomes infinite, the number of particles in the lower energy states and in the higher energy states becomes equal. In some situations, it is possible to create a system in which there are more particles in the higher energy states than in the lower ones. This situation can be characterised as having a negative temperature. A substance with a negative temperature is not colder than absolute zero, but rather it is hotter than infinite temperature.

Temperature and disorder

The distribution of energy among the various translational, vibrational, rotational, electronic, and nuclear modes of a system determines the macroscopic temperature. In a "normal" system, thermal energy is constantly being exchanged between the various modes.

However, for some cases it is possible to isolate one or more of the modes. In practice the isolated modes still exchange energy with the other modes, but the time scale of this exchange is much slower than for the exchanges within the isolated mode. One example is the case of nuclear spins in a strong external magnetic field. In this case energy flows fairly rapidly among the spin states of interacting atoms, but energy transfer between the nuclear spins and other modes is relatively slow. Since the energy flow is predominantly within the spin system, it makes sense to think of a spin temperature that is distinct from the temperature due to other modes.

A definition of temperature can be base on the relationship:

(See here for discussion)

The relationship suggests that a positive temperature corresponds to the condition where entropy, S, increases as thermal energy, qrev, is added to the system. This is the "normal" condition in the macroscopic world and is always the case for the translational, vibrational, rotational, and non-spin related electronic and nuclear modes. The reason for this is that there are an infinite number of these types of modes and adding more heat to the system increases the number of modes that are energetically accessible, and thus the entropy.

Cases where negative temperatures can exist

In the case of electronic and nuclear spin systems there are only a finite number of modes available, often just two, corresponding to spin up and spin down. In the absence of a magnetic field, these spin states are degenerate, meaning that they correspond to the same energy. When an external magnetic field is applied, the energy levels are split, since those spin states that are aligned with the magnetic field will have a different energy than those that are anti-parallel to it.

In the absence of a magnetic field, one would expect such a two-spin system to have roughly half the atoms in the spin-up state and half in the spin-down state, since this maximizes entropy. Upon application of a magnetic field, some of the atoms will tend to align so as to minimize the energy of the system, thus slightly more atoms should be in the lower-energy state (for the purposes of this example we'll assume the spin-down state is the lower-energy state). It is possible to add energy to the spin system using radio frequency (RF) techniques. This causes atoms to flip from spin-down to spin-up.

Since we started with over half the atoms in the spin-down state, initially this drives the system towards a 50/50 mixture, so the entropy is increasing, corresponding to a positive temperature. However, at some point more than half of the spins are in the spin-up position. In this case, adding additional energy reduces the entropy since it moves the system further from a 50/50 mixture. This reduction in entropy with the addition of energy corresponds to a negative temperature.

This phenomenon can also be observed in many lasing systems, wherein a large fraction of the system's atoms (for chemical and gas lasers) or electrons (in semi-conductor lasers) are in excited states.

References

  • . ISBN 0716710889. {{cite book}}: Missing or empty |title= (help); Unknown parameter |Author= ignored (|author= suggested) (help); Unknown parameter |Publisher= ignored (|publisher= suggested) (help); Unknown parameter |Title= ignored (|title= suggested) (help); Unknown parameter |Year= ignored (|year= suggested) (help)