Ergogenic aid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Seppi333 (talk | contribs) at 01:49, 16 March 2016 (ce). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Jump to navigation Jump to search

Ergogenic aids are any external influences that enhance athletic performance or facilitate physical exercise. These include certain performance-enhancing drugs, mechanical aids, physiological aids, nutritional aids (sports supplements), and psychological aids.[1][2]

Examples of ergogenic drugs and supplements

Concerns

Because ergogenic drugs improve physical performance, they are often banned in competitive sports by the World Anti-Doping Agency and other regulatory bodies.

See also

References

Template:Research help

  1. ^ a b Liddle DG, Connor DJ (June 2013). "Nutritional supplements and ergogenic AIDS". Prim. Care. 40 (2): 487–505. doi:10.1016/j.pop.2013.02.009. PMID 23668655. Amphetamines and caffeine are stimulants that increase alertness, improve focus, decrease reaction time, and delay fatigue, allowing for an increased intensity and duration of training ...
    Physiologic and performance effects [of amphetamines]
     • Amphetamines increase dopamine/norepinephrine release and inhibit their reuptake, leading to central nervous system (CNS) stimulation
     • Amphetamines seem to enhance athletic performance in anaerobic conditions 39 40
     • Improved reaction time
     • Increased muscle strength and delayed muscle fatigue
     • Increased acceleration
     • Increased alertness and attention to task
  2. ^ Thein LA, Thein JM, Landry GL (1995). "Ergogenic aids". Phys Ther. 75 (5): 426–39. PMID 7732086. Retrieved 9 March 2015.
  3. ^ Berardi, John; Brooks, Justin (7 December 2006). "BCAA and Athletic Performance". Retrieved January 2016. In this article, we'll discuss the effectiveness of one of these supposed ergogenic aids – branched chain amino acids (BCAA). {{cite web}}: Check date values in: |access-date= (help)
  4. ^ Parr JW (July 2011). "Attention-deficit hyperactivity disorder and the athlete: new advances and understanding". Clin. Sports Med. 30 (3): 591–610. doi:10.1016/j.csm.2011.03.007. PMID 21658550. In 1980, Chandler and Blair47 showed significant increases in knee extension strength, acceleration, anaerobic capacity, time to exhaustion during exercise, pre-exercise and maximum heart rates, and time to exhaustion during maximal oxygen consumption (VO2 max) testing after administration of 15 mg of dextroamphetamine versus placebo. Most of the information to answer this question has been obtained in the past decade through studies of fatigue rather than an attempt to systematically investigate the effect of ADHD drugs on exercise. ... In 2008, Roelands and colleagues53 studied the effect of reboxetine, a pure NE reuptake inhibitor, similar to atomoxetine, in 9 healthy, well-trained cyclists. They too exercised in both temperate and warm environments. They showed decreased power output and exercise performance at both 18 and 30 degrees centigrade. Their conclusion was that DA reuptake inhibition was the cause of the increased exercise performance seen with drugs that affect both DA and NE (MPH, amphetamine, and bupropion).
  5. ^ Rattray B, Argus C, Martin K, Northey J, Driller M (March 2015). "Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?". Front. Physiol. 6: 79. doi:10.3389/fphys.2015.00079. PMC 4362407. PMID 25852568. Aside from accounting for the reduced performance of mentally fatigued participants, this model rationalizes the reduced RPE and hence improved cycling time trial performance of athletes using a glucose mouthwash (Chambers et al., 2009) and the greater power output during a RPE matched cycling time trial following amphetamine ingestion (Swart, 2009). ... Dopamine stimulating drugs are known to enhance aspects of exercise performance (Roelands et al., 2008){{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Parker KL, Lamichhane D, Caetano MS, Narayanan NS (October 2013). "Executive dysfunction in Parkinson's disease and timing deficits". Front. Integr. Neurosci. 7: 75. doi:10.3389/fnint.2013.00075. PMC 3813949. PMID 24198770. Manipulations of dopaminergic signaling profoundly influence interval timing, leading to the hypothesis that dopamine influences internal pacemaker, or "clock," activity. For instance, amphetamine, which increases concentrations of dopamine at the synaptic cleft advances the start of responding during interval timing, whereas antagonists of D2 type dopamine receptors typically slow timing;... Depletion of dopamine in healthy volunteers impairs timing, while amphetamine releases synaptic dopamine and speeds up timing.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  7. ^ Pesta DH, Angadi SS, Burtscher M, Roberts CK (2013). "The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance". Nutr Metab (Lond). 10 (1): 71. doi:10.1186/1743-7075-10-71. PMC 3878772. PMID 24330705. Caffeine-induced increases in performance have been observed in aerobic as well as anaerobic sports (for reviews, see [26,30,31]). Trained athletes seem to benefit from a moderate dose of 5 mg/kg [32], however, even lower doses of caffeine (1.0–2.0 mg/kg) may improve performance [33]. Some groups found significantly improved time trial performance [34] or maximal cycling power [35], most likely related to a greater reliance on fat metabolism and decreased neuromuscular fatigue, respectively. Theophylline, a metabolite of caffeine, seems to be even more effective in doing so [36]. The effect of caffeine on fat oxidation, however, may only be significant during lower exercise intensities and may be blocked at higher intensities [37]. ... For both caffeine-naïve as well as caffeine-habituated subjects, moderate to high doses of caffeine are ergogenic during prolonged moderate intensity exercise [61]. ... In summary, caffeine, even at physiological doses (3–6 mg/kg), as well as coffee are proven ergogenic aids and as such – in most exercise situations, especially in endurance-type events – clearly work-enhancing [26]. It most likely has a peripheral effect targeting skeletal muscle metabolism as well as a central effect targeting the brain to enhance performance, especially during endurance events (see Table 1). Also for anaerobic tasks, the effect of caffeine on the CNS might be most relevant. ... Muendel et al. [93] found a 17% improvement in time to exhaustion after nicotine patch application compared to a placebo without affecting cardiovascular and respiratory parameters or substrate metabolism. In this sense, nicotine seems to exert similar effects as caffeine by delaying the development of central fatigue as impaired central drive is an important factor contributing to fatigue during exercise. ... The physiological effects of the above mentioned substances are well established. However, the ergogenic effect of some of the discussed drugs may be questioned and one has to consider the cohort tested for every specific substance. However, only caffeine has enough strength of evidence to be considered an ergogenic aid.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ a b c Roelands B, De Pauw K, Meeusen R (June 2015). "Neurophysiological effects of exercise in the heat". Scand. J. Med. Sci. Sports. 25 Suppl 1: 65–78. doi:10.1111/sms.12350. PMID 25943657. Retrieved 10 March 2016. Physical fatigue has classically been attributed to peripheral factors within the muscle (Fitts, 1996), the depletion of muscle glycogen (Bergstrom & Hultman, 1967) or increased cardiovascular, metabolic, and thermoregulatory strain (Abbiss & Laursen, 2005; Meeusen et al., 2006b). In recent decennia however, it became clear that the central nervous system plays an important role in the onset of fatigue during prolonged exercise (Klass et al., 2008), certainly when ambient temperature is increased  ... 5-HT, DA, and NA have all been implicated in the control of thermoregulation and are thought to mediate thermoregulatory responses, certainly since their neurons innervate the hypothalamus (Roelands & Meeusen, 2010). ... Strikingly, both the ratings of perceived exertion and the thermal sensation were not different to the placebo trial. This indicates that subjects did not feel they were producing more power and consequently more heat. ... Taken together, these data indicate strong ergogenic effects of an increased DA concentration in the brain, without any change in the perception of effort. ... The combined effects of DA and NA on performance in the heat were studied by our research group on a number of occasions. ... the administration of bupropion (DA/NA reuptake inhibitor) significantly improved performance. Coinciding with this ergogenic effect, the authors observed core temperatures that were much higher compared with the placebo situation. Interestingly, this occurred without any change in the subjective feelings of thermal sensation or perceived exertion. Similar to the methylphenidate study (Roelands et al., 2008b), bupropion may dampen or override inhibitory signals arising from the central nervous system to cease exercise because of hyperthermia, and enable an individual to continue maintaining a high power output