Kaempferol

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 58.96.114.192 (talk) at 08:11, 23 May 2013 (added space between grapefruit and cabbage). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Jump to navigation Jump to search
Kaempferol
Kaempferol
Names
IUPAC name
3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one
Other names
Kaempherol; Robigenin; Pelargidenolon; Rhamnolutein; Rhamnolutin; Populnetin; Trifolitin; Kempferol; Swartziol; 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.007.535 Edit this at Wikidata
KEGG
  • C1=CC(=CC=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O
Properties
C15H10O6
Molar mass 286.23 g/mol
Density 1.688 g/mL
Melting point 276–278 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Kaempferol (/'kiːmpfərɒl/) is a natural flavonol, a type of flavonoid, that has been isolated from tea, broccoli, Delphinium, Witch-hazel, grapefruit, cabbage, kale, beans, endive, leek, tomato, strawberries, grapes, brussels sprouts, apples and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 °C. It is slightly soluble in water but soluble in hot ethanol and diethyl ether.

Chemistry

Kaempferol is a yellow crystalline solid with a melting point of 276–278 °C. It is slightly soluble in water, but soluble in hot ethanol and diethyl ether.

Natural occurrences

It can be isolated from tea,[1] capers(135 mg/100g),[2] kale(26 mg/100g),[3] dill(13 mg/100g),[4] broccoli(6 mg/100g),[5] Delphinium, witch-hazel, grapefruit, cabbage, beans, endive, leek, tomato, strawberries, grapes, Brussels sprouts, apples, and other plant sources.

Kaempferol and its glucoside can be isolated from the methanolic extract of fronds of the fern Phegopteris connectilis.[6]

Biological activity

Some epidemiological studies have found a positive association between the consumption of foods containing kaempferol and a reduced risk of developing several disorders such as cancer and cardiovascular diseases. Numerous preclinical studies have shown kaempferol and some glycosides of kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, cardioprotective, neuroprotective, antidiabetic, antiosteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic, and antiallergic activities (see review article).[7]

Many glycosides of kaempferol, such as kaempferitrin and astragalin, have been isolated as natural products from plants. Kaempferol consumption in tea and broccoli has been associated with reduced risk of heart disease.[8] A related compound, naringenin, may be present at the same time, such as in grapefruit.

Kaempferol gives the flowers of Acacia decurrens and Acacia longifolia their color.[9] Antidepressant properties have been reported in tests on animals.[10][unreliable source?],[11][12]

An eight-year study found the consumption of three flavonols (kaempferol, quercetin, and myricetin) correlated with a lower risk of pancreatic cancer among current smokers, but not nonsmokers and exsmokers.[13]

Kaempferol consumption is also correlated with a reduced lung cancer incidence.[14]

Kaempferol may be a potent prophylactic against NOX-mediated neurodegeneration.[15]

Kaempferol has been found to inhibit the enzyme fatty acid amide hydrolase (FAAH).[16]

Metabolism

The enzyme kaempferol 4'-O-methyltransferase uses S-adenosyl methionine and kaempferol to produce S-adenosylhomocysteine and kaempferide.

Glycosides

List of the plants that contains the chemical

Kaempferol has been identified in many edible plants. It has been found in Allium ampeloprasum (leek), A. cepa (onion), A. schoenoprasum (chives), Amaranthus lividus (amaranth), Angelica keiskei (ashitaba), Armoracia rusticana (horseradish), Artemisia dracunculus (tarragon), Atriplex hortensis (orach), Brassica campestris (Chinese cabbage), B. juncea (mustard), B. napobrassica (rutabagas), B. oleracea (broccoli, Brussels sprouts, green cabbage and kale), B. rapa (turnip greens), Bunias orientalis (Turkish rocket), Camellia sinensis (tea), Capparis spinosa (capers), Celosia argentea (feather cockscomb), Cichorium endivia (endive), Citrus paradisi (grapefruit), Cnidoscolus aconitifolius and C. chayamansa (tree spinach), Coccinia grandis (ivy gourd), Cucumis sativus (cucumber), Cucurbita maxima (squash), Cyamopsis tetragonoloba (cluster bean), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), Eruca sativa (rocket-salad), Foeniculum vulgare (fennel), Fragaria vesca (strawberry), Houttuynia cordata (fishwort), Ipomoea batatas (sweet potato), Lactuca sativa (lettuce), Lepidium sativum (cress), Levisticum officinale (lovage), Lycium barbarum and L. chinense (goji berries), Malus domestica (apple), Momordica cochinchinensis (gac), Morinda citrifolia (Indian mulberry), Nasturtium officinale (watercress), Nepenthes gracilis,[18] Olea europaea (olive oil), Petroselinum crispum (parsley), Phaseolus vulgaris (green beans), Pistacia vera (pistachio), Prunus persica (peach), Raphanus sativus (radishes), Ribes uva-crispa (gooseberries), Rubís fruticosus (blackberries), Rubus idaeus (raspberry), Sambucus nigra (elderberry), Sauropus androgynus (star gooseberry), Sesbania grandiflora (sesbania), Solanum lycopersicum (tomatoes), S. nigrum (nightshade), S. tuberosum (potatoes), Spinacia oleracea (spinach), Vaccinium erythrocarpum, V. acrocarpon, V. microcarpum and V. oxycoccos (cranberries), Vaccinium vitis-idaea (cowberries), Vicia faba (broadbeans), Vigna unguiculata (cowpea), Vitis rotundifolia (muscadine grapes), and Vitis vinífera (grapes).[7] and chia seed.

Kaempferol has been identified in many plant species commonly used in traditional medicine. It has been found in Acacia nilotica, Adansonia digitata, Albizia lebbeck, Aloe vera, Amburana cearensis, Ammi majus, Angelica keiskei, Ardisia japonica, Bauhinia forficata, Bauhinia microstachya, Bunium persicum, Capparis spinosa, Cassia alata, Centella asiatica, Chromolaena odorata, Cissus sicyoides, Coccinia grandis, Crassocephalum crepidioides, Crocus sativus, Cynanchum acutum, Cynanchum chinense, Dicliptera chinensis, Equisetum arvense, Euphorbia pekinensis, Ficaria verna, Foeniculum vulgare, Galega officinalis, Ginkgo biloba, Glycine max, Grindelia robusta, Gymnema sylvestre, Helleborus niger, Hippophae rhamnoides, Houttuynia cordata, Hypericum perforatum, Impatiens balsamina, Lamium album, Laurus nobilis, Lonicera japonica, Lycium barbarum, Lycium chinense, Lysimachia vulgaris, Malva parviflora, Peumus boldus, Phyllanthus emblica, Ribes nigrum, Rosmarinus officinalis, Sambucus nigra, Sanguisorba minor, Siraitia grosvenori, Solanum nigrum, Solenostemma argel, Solidago virgaaurea, Sutherlandia frutescens, Symphytum officinale, Syzygium aromaticum, Tilia americana, Toona sinensis, Trigonella foenum-graecum, Tropaeolum majus, Vaccinium vitis-idaea, Warburgia ugandensis and Wedelia trilobata.[7]

Kaempferol is also present in Kaempferia galanga[19] and Opuntia ficus-indica var. saboten.[20]

Kaempferol as a longevity-promoting agent

The SIRT1 member of sirtuin deacetylases has been shown, along with PGC-1α, to mediate the life span extension associated with caloric restriction. SIRT1 deacetylates protein substrates, thus altering their activity or function. SIRT1 interacts directly with PGC-1α to mediate gluconeogenesis and mitochondrial biogenesis by deacetylating and activating PGC-1α. The activators of SIRT1 polyphenols resveratrol and kaempferol have been shown to increase mitochondrial function and energy expenditure.[21]

A study used the multicellular model organism nematode Caenorhabditis elegans to examine the effects of the flavonoids kaempferol and fisetin on their protective action in individual living worms. The results showed both flavonoids increased the survival of C. elegans, reduced the intracellular reactive oxygen species accumulation at lethal thermal stress, and diminished the extent of induced oxidative stress. Kaempferol had a stronger impact. It also attenuated the accumulation of the ageing marker lipofuscin, suggesting a life-prolonging activity of this flavonoid. Fisetin did not have this effect.[22]

References

  1. ^ Jun Seong Park, Ho Sik Rho, Duck Hee Kim, and Ih Seop Chang (2006). "Enzymatic Preparation of Kaempferol from Green Tea Seed and Its Antioxidant Activity". J. Agric. Food Chem. 54 (8): 2951–2956. doi:10.1021/jf052900a. PMID 16608214.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ "Capers, canned".
  3. ^ "Kale, raw".
  4. ^ "Dill weed, fresh".
  5. ^ "Broccoli, raw".
  6. ^ Klaus-Peter, Adam (1999). "Phenolic constituents of the fernPhegopteris connectilis". Phytochemistry. 52 (5): 929–934. doi:10.1016/S0031-9422(99)00326-X.
  7. ^ a b c Calderon-Montaño JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. (2011). "A review on the dietary flavonoid kaempferol". Mini Rev Med Chem. 11 (4): 298–344. doi:10.2174/138955711795305335. PMID 21428901.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M."A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011 Apr;11(4):298-344
  9. ^ Lycaeum -- Phytochemistry Intro
  10. ^ Hosseinzadeh, Hossein; Motamedshariaty, Vahidehsadat; Farzin Hadizadeh, Farzin (2007). "Antidepressant effect of Kaempferol, a constituent of saffron (crocus sativus) petal, in mice and rats" (PDF). Pharmacologyonline. 2: 367–370. Retrieved 2011-06-17.
  11. ^ Hou Y. Aboukhatwa MA. Lei DL. Manaye K. Khan I. Luo Y."Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice." Neuropharmacology. 58(6):911-20, 2010 May.
  12. ^ Hou, Y; Aboukhatwa, MA; Lei, DL; Manaye, K; Khan, I; Luo, Y (2010). "Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice". Neuropharmacology. 58 (6): 911–20.
  13. ^ Nöthlings Ute, Murphy Suzanne P., Wilkens Lynne R., Henderson Brian E., Kolone Laurence N. (2007). "Flavonols and Pancreatic Cancer Risk". American Journal of Epidemiology. 166 (8): 924–931. doi:10.1093/aje/kwm172. PMID 17690219.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^ Irwin, Kim (May 29, 2008). "Fruits, vegetables, teas may protect smokers from lung cancer". News Releases. UCLA. Retrieved 2011-06-17.
  15. ^ Jang YJ. Kim J. Shim J. Kim J. Byun S. Oak MH. Lee KW. Lee HJ.,"Kaempferol attenuates 4-hydroxynonenal-induced apoptosis in PC12 cells by directly inhibiting NADPH oxidase". Journal of Pharmacology & Experimental Therapeutics. 337(3):747-54, 2011 Jun.
  16. ^ Thors, L (2008). "Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids" (PDF). British Journal of Pharmacology. 2. 155 (2): 244–252. doi:10.1038/bjp.2008.237. PMID 18552875. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  17. ^ Flavonoids and a proanthrocyanidin from rhizomes of Selliguea feei. Baek Nam-In, Kennelly E.J., Kardono L.B.S., Tsauri S., Padmawinata K., Soejarto D.D. and Kinghorn A.D., Phytochemistry, 1994, vol. 36, no2, pages 513-518, INIST 3300075
  18. ^ "Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis". Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis. Fitoterapia. Retrieved 27 February 2012.
  19. ^ Mustafa RA. Abdul Hamid A. Mohamed S. Bakar FA. "Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants". Journal of Food Science. 75(1):C28-35, 2010 Jan-Feb.
  20. ^ Ncibi, S; Ben Othman, M; Akacha, A; Krifi, MN; Zourgui, L (2008). "Opuntia ficus indica extract protects against chlorpyrifos-induced damage on mice liver". Food and chemical toxicology. 46 (2): 797–802. doi:10.1016/j.fct.2007.08.047. PMID 17980473.
  21. ^ Rasbach, Kyle A.; Schnellman, Rick G. (2008). "Isoflavones promote mitochondrial biogenesis". The Journal of Pharmacology. Retrieved 2011-11-08.
  22. ^ Kampkötter, Andreas (2007). "Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans". Arch. Toxicol. 81 (12): 849–58. doi:10.1007/s00204-007-0215-4. PMID 17551714. {{cite journal}}: |access-date= requires |url= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)