https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Resolution_%28algebra%29&useskin=vector&useskin=vector Resolution (algebra) - Revision history 2024-10-19T11:53:00Z Revision history for this page on the wiki MediaWiki 1.43.0-wmf.27 https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=1200998429&oldid=prev Bm319 at 18:21, 30 January 2024 2024-01-30T18:21:48Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:21, 30 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In [[mathematics]], and more specifically in [[homological algebra]], a '''resolution''' (or '''left resolution'''; dually a '''coresolution''' or '''right resolution'''&lt;ref&gt;{{harvnb|Jacobson|2009|loc=§6.5}} uses ''coresolution'', though ''right resolution'' is more common, as in {{harvnb|Weibel|1994|loc=Chap. 2}}&lt;/ref&gt;) is an [[exact sequence]] of [[module (mathematics)|module]]s (or, more generally, of [[Object (category theory)|object]]s of an [[abelian category]])<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">which</del> is used to define [[invariant (mathematics)|invariants]] characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a '''finite resolution''' is one where only finitely many of the objects in the sequence are [[Zero object|non-zero]]; it is usually represented by a finite exact sequence in which the leftmost object (for resolutions) or the rightmost object (for coresolutions) is the [[zero-object]].&lt;ref&gt;{{nlab|id=projective+resolution|title=projective resolution}}, {{nlab|id=resolution}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In [[mathematics]], and more specifically in [[homological algebra]], a '''resolution''' (or '''left resolution'''; dually a '''coresolution''' or '''right resolution'''&lt;ref&gt;{{harvnb|Jacobson|2009|loc=§6.5}} uses ''coresolution'', though ''right resolution'' is more common, as in {{harvnb|Weibel|1994|loc=Chap. 2}}&lt;/ref&gt;) is an [[exact sequence]] of [[module (mathematics)|module]]s (or, more generally, of [[Object (category theory)|object]]s of an [[abelian category]]) <ins style="font-weight: bold; text-decoration: none;">that</ins> is used to define [[invariant (mathematics)|invariants]] characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a '''finite resolution''' is one where only finitely many of the objects in the sequence are [[Zero object|non-zero]]; it is usually represented by a finite exact sequence in which the leftmost object (for resolutions) or the rightmost object (for coresolutions) is the [[zero-object]].&lt;ref&gt;{{nlab|id=projective+resolution|title=projective resolution}}, {{nlab|id=resolution}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Generally, the objects in the sequence are restricted to have some property ''P'' (for example to be free). Thus one speaks of a ''P resolution''. In particular, every module has '''free resolutions''', '''projective resolutions''' and '''flat resolutions''', which are left resolutions consisting, respectively of [[free module]]s, [[projective module]]s or [[flat module]]s. Similarly every module has '''injective resolutions''', which are right resolutions consisting of [[injective module]]s.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Generally, the objects in the sequence are restricted to have some property ''P'' (for example to be free). Thus one speaks of a ''P resolution''. In particular, every module has '''free resolutions''', '''projective resolutions''' and '''flat resolutions''', which are left resolutions consisting, respectively of [[free module]]s, [[projective module]]s or [[flat module]]s. Similarly every module has '''injective resolutions''', which are right resolutions consisting of [[injective module]]s.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 6:</td> <td colspan="2" class="diff-lineno">Line 6:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Definitions===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Definitions===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Given a module ''M'' over a ring ''R'', a '''left resolution''' (or simply '''resolution''') of ''M'' is an [[exact sequence]] (possibly infinite) of ''R''-modules</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Given a module ''M'' over a <ins style="font-weight: bold; text-decoration: none;">[[</ins>ring<ins style="font-weight: bold; text-decoration: none;"> (mathematics)|ring]]</ins> ''R'', a '''left resolution''' (or simply '''resolution''') of ''M'' is an [[exact sequence]] (possibly infinite) of ''R''-modules</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\cdots\overset{d_{n+1}}{\longrightarrow}E_n\overset{d_n}{\longrightarrow}\cdots\overset{d_3}{\longrightarrow}E_2\overset{d_2}{\longrightarrow}E_1\overset{d_1}{\longrightarrow}E_0\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\cdots\overset{d_{n+1}}{\longrightarrow}E_n\overset{d_n}{\longrightarrow}\cdots\overset{d_3}{\longrightarrow}E_2\overset{d_2}{\longrightarrow}E_1\overset{d_1}{\longrightarrow}E_0\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The homomorphisms ''d&lt;sub&gt;i&lt;/sub&gt;'' are called boundary maps. The map ε is called an '''augmentation map'''. For succinctness, the resolution above can be written as</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The homomorphisms ''d&lt;sub&gt;i&lt;/sub&gt;'' are called boundary maps. The map <ins style="font-weight: bold; text-decoration: none;">''</ins>ε<ins style="font-weight: bold; text-decoration: none;">''</ins> is called an '''augmentation map'''. For succinctness, the resolution above can be written as</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;E_\bullet\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;E_\bullet\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 27:</td> <td colspan="2" class="diff-lineno">Line 27:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Resolutions are used to define [[homological dimension (disambiguation)|homological dimension]]s. The minimal length of a finite projective resolution of a module ''M'' is called its ''[[projective dimension]]'' and denoted pd(''M''). For example, a module has projective dimension zero if and only if it is a projective module. If ''M'' does not admit a finite projective resolution then the projective dimension is infinite. For example, for a commutative [[local ring]] ''R'', the projective dimension is finite if and only if ''R'' is [[regular local ring|regular]] and in this case it coincides with the [[Krull dimension]] of ''R''. Analogously, the [[injective dimension]] id(''M'') and [[flat dimension]] fd(''M'') are defined for modules also.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Resolutions are used to define [[homological dimension (disambiguation)|homological dimension]]s. The minimal length of a finite projective resolution of a module ''M'' is called its ''[[projective dimension]]'' and denoted pd(''M''). For example, a module has projective dimension zero if and only if it is a projective module. If ''M'' does not admit a finite projective resolution then the projective dimension is infinite. For example, for a commutative [[local ring]] ''R'', the projective dimension is finite if and only if ''R'' is [[regular local ring|regular]] and in this case it coincides with the [[Krull dimension]] of ''R''. Analogously, the [[injective dimension]] id(''M'') and [[flat dimension]] fd(''M'') are defined for modules also.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The injective and projective dimensions are used on the category of right ''R''<del style="font-weight: bold; text-decoration: none;"> </del>modules to define a homological dimension for ''R'' called the right [[global dimension]] of ''R''. Similarly, flat dimension is used to define [[weak global dimension]]. The behavior of these dimensions reflects characteristics of the ring. For example, a ring has right global dimension 0 if and only if it is a [[semisimple ring]], and a ring has weak global dimension 0 if and only if it is a [[von Neumann regular ring]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The injective and projective dimensions are used on the category of right ''R''<ins style="font-weight: bold; text-decoration: none;">-</ins>modules to define a homological dimension for ''R'' called the right [[global dimension]] of ''R''. Similarly, flat dimension is used to define [[weak global dimension]]. The behavior of these dimensions reflects characteristics of the ring. For example, a ring has right global dimension 0 if and only if it is a [[semisimple ring]], and a ring has weak global dimension 0 if and only if it is a [[von Neumann regular ring]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Graded modules and algebras ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Graded modules and algebras ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Let ''M'' be a [[graded module]] over a [[graded algebra]], which is generated over a field by its elements of positive degree. Then ''M'' has a free resolution in which the free modules ''E''&lt;sub&gt;''i''&lt;/sub&gt; may be graded in such a way that the ''d''&lt;sub&gt;''i''&lt;/sub&gt; and ε are [[Graded vector space#Linear maps|graded linear maps]]. Among these graded free resolutions, the '''minimal free resolutions''' are those for which the number of basis elements of each ''E''&lt;sub&gt;''i''&lt;/sub&gt; is minimal. The number of basis elements of each ''E''&lt;sub&gt;''i''&lt;/sub&gt; and their degrees are the same for all the minimal free resolutions of a graded module.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Let ''M'' be a [[graded module]] over a [[graded algebra]], which is generated over a <ins style="font-weight: bold; text-decoration: none;">[[</ins>field<ins style="font-weight: bold; text-decoration: none;"> (mathematics)|field]]</ins> by its elements of positive degree. Then ''M'' has a free resolution in which the free modules ''E''&lt;sub&gt;''i''&lt;/sub&gt; may be graded in such a way that the ''d''&lt;sub&gt;''i''&lt;/sub&gt; and ε are [[Graded vector space#Linear maps|graded linear maps]]. Among these graded free resolutions, the '''minimal free resolutions''' are those for which the number of basis elements of each ''E''&lt;sub&gt;''i''&lt;/sub&gt; is minimal. The number of basis elements of each ''E''&lt;sub&gt;''i''&lt;/sub&gt; and their degrees are the same for all the minimal free resolutions of a graded module.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>If ''I'' is a [[homogeneous ideal]] in a [[polynomial ring]] over a field, the [[<del style="font-weight: bold; text-decoration: none;">Castelnuovo-Mumford</del> regularity]] of the [[projective algebraic set]] defined by ''I'' is the minimal integer ''r'' such that the degrees of the basis elements of the ''E''&lt;sub&gt;''i''&lt;/sub&gt; in a minimal free resolution of ''I'' are all lower than ''r-i''.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>If ''I'' is a [[homogeneous ideal]] in a [[polynomial ring]] over a field, the [[<ins style="font-weight: bold; text-decoration: none;">Castelnuovo–Mumford</ins> regularity]] of the [[projective algebraic set]] defined by ''I'' is the minimal integer ''r'' such that the degrees of the basis elements of the ''E''&lt;sub&gt;''i''&lt;/sub&gt; in a minimal free resolution of ''I'' are all lower than ''r-i''.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Examples===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Examples===</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 58:</td> <td colspan="2" class="diff-lineno">Line 58:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>of an object ''M'' of ''A'' is called ''F''-acyclic, if the [[derived functor]]s ''R''&lt;sub&gt;''i''&lt;/sub&gt;''F''(''E''&lt;sub&gt;''n''&lt;/sub&gt;) vanish for all ''i''&amp;nbsp;&gt;&amp;nbsp;0 and ''n''&amp;nbsp;≥&amp;nbsp;0. Dually, a left resolution is acyclic with respect to a right exact functor if its derived functors vanish on the objects of the resolution.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>of an object ''M'' of ''A'' is called ''F''-acyclic, if the [[derived functor]]s ''R''&lt;sub&gt;''i''&lt;/sub&gt;''F''(''E''&lt;sub&gt;''n''&lt;/sub&gt;) vanish for all ''i''&amp;nbsp;&gt;&amp;nbsp;0 and ''n''&amp;nbsp;≥&amp;nbsp;0. Dually, a left resolution is acyclic with respect to a right exact functor if its derived functors vanish on the objects of the resolution.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For example, given a ''R''<del style="font-weight: bold; text-decoration: none;"> </del>module ''M'', the [[tensor product]] &amp;nbsp;&amp;nbsp;&lt;math&gt;\otimes_R M&lt;/math&gt; is a right exact functor '''Mod'''(''R'') &amp;rarr; '''Mod'''(''R''). Every flat resolution is acyclic with respect to this functor. A ''flat resolution'' is acyclic for the tensor product by every ''M''. Similarly, resolutions that are acyclic for all the functors '''Hom'''(&amp;nbsp;⋅&amp;nbsp;, ''M'') are the projective resolutions and those that are acyclic for the functors '''Hom'''(''M'', &amp;nbsp;⋅&amp;nbsp;) are the injective resolutions.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For example, given a ''R''<ins style="font-weight: bold; text-decoration: none;">-</ins>module ''M'', the [[tensor product]] &amp;nbsp;&amp;nbsp;&lt;math&gt;\otimes_R M&lt;/math&gt; is a right exact functor '''Mod'''(''R'') &amp;rarr; '''Mod'''(''R''). Every flat resolution is acyclic with respect to this functor. A ''flat resolution'' is acyclic for the tensor product by every ''M''. Similarly, resolutions that are acyclic for all the functors '''Hom'''(&amp;nbsp;⋅&amp;nbsp;, ''M'') are the projective resolutions and those that are acyclic for the functors '''Hom'''(''M'', &amp;nbsp;⋅&amp;nbsp;) are the injective resolutions.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Any injective (projective) resolution is ''F''-acyclic for any left exact (right exact, respectively) functor.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Any injective (projective) resolution is ''F''-acyclic for any left exact (right exact, respectively) functor.</div></td> </tr> </table> Bm319 https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=1151958510&oldid=prev Нейроромант: /* Acyclic resolution */ 2023-04-27T08:35:11Z <p><span class="autocomment">Acyclic resolution</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:35, 27 April 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 68:</td> <td colspan="2" class="diff-lineno">Line 68:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This situation applies in many situations. For example, for the [[constant sheaf]] ''R'' on a [[differentiable manifold]] ''M'' can be resolved by the sheaves &lt;math&gt;\mathcal C^*(M)&lt;/math&gt; of smooth [[differential form]]s:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This situation applies in many situations. For example, for the [[constant sheaf]] ''R'' on a [[differentiable manifold]] ''M'' can be resolved by the sheaves &lt;math&gt;\mathcal C^*(M)&lt;/math&gt; of smooth [[differential form]]s:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;0 \rightarrow R \subset \mathcal C^0(M) \stackrel d \rightarrow \mathcal C^1(M) \stackrel d \rightarrow \cdots \mathcal C^{\dim M}(M) \rightarrow 0.&lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;0 \rightarrow R \subset \mathcal C^0(M) \stackrel d \rightarrow \mathcal C^1(M) \stackrel d \rightarrow \cdots<ins style="font-weight: bold; text-decoration: none;"> \stackrel d \rightarrow</ins> \mathcal C^{\dim M}(M) \rightarrow 0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The sheaves &lt;math&gt;\mathcal C^*(M)&lt;/math&gt; are [[fine sheaf|fine sheaves]], which are known to be acyclic with respect to the [[global section]] functor &lt;math&gt;\Gamma: \mathcal F \mapsto \mathcal F(M)&lt;/math&gt;. Therefore, the [[sheaf cohomology]], which is the derived functor of the global section functor &amp;Gamma; is computed as</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The sheaves &lt;math&gt;\mathcal C^*(M)&lt;/math&gt; are [[fine sheaf|fine sheaves]], which are known to be acyclic with respect to the [[global section]] functor &lt;math&gt;\Gamma: \mathcal F \mapsto \mathcal F(M)&lt;/math&gt;. Therefore, the [[sheaf cohomology]], which is the derived functor of the global section functor &amp;Gamma; is computed as</div></td> </tr> </table> Нейроромант https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=1090411231&oldid=prev 1234qwer1234qwer4: /* Resolutions in abelian categories */ inconsistent indentation 2022-05-29T10:55:07Z <p><span class="autocomment">Resolutions in abelian categories: </span> inconsistent indentation</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:55, 29 May 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 48:</td> <td colspan="2" class="diff-lineno">Line 48:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Abelian categories without projective resolutions in general ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Abelian categories without projective resolutions in general ===</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One class of examples of Abelian categories without projective resolutions are the categories &lt;math&gt;\text{Coh}(X)&lt;/math&gt; of [[Coherent sheaf|coherent sheaves]] on a [[Scheme (mathematics)|scheme]] &lt;math&gt;X&lt;/math&gt;. For example, if &lt;math&gt;X = \mathbb{P}^n_S&lt;/math&gt; is projective space, any coherent sheaf &lt;math&gt;\mathcal{M}&lt;/math&gt; on &lt;math&gt;X&lt;/math&gt; has a presentation given by an exact sequence<del style="font-weight: bold; text-decoration: none;">&lt;blockquote&gt;</del>&lt;math&gt;\bigoplus_{i,j=0} \mathcal{O}_X(s_{i,j}) \to \bigoplus_{i=0} \mathcal{O}_X(s_i) \to \mathcal{M} \to 0&lt;/math&gt;<del style="font-weight: bold; text-decoration: none;">&lt;/blockquote&gt;</del>The first two terms are not in general projective since &lt;math&gt;H^n(\mathbb{P}^n_S,\mathcal{O}_X(s)) \neq 0&lt;/math&gt; for &lt;math&gt;s &gt; 0&lt;/math&gt;. But, both terms are locally free, and locally flat. Both classes of sheaves can be used in place for certain computations, replacing projective resolutions for computing some derived functors.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One class of examples of Abelian categories without projective resolutions are the categories &lt;math&gt;\text{Coh}(X)&lt;/math&gt; of [[Coherent sheaf|coherent sheaves]] on a [[Scheme (mathematics)|scheme]] &lt;math&gt;X&lt;/math&gt;. For example, if &lt;math&gt;X = \mathbb{P}^n_S&lt;/math&gt; is projective space, any coherent sheaf &lt;math&gt;\mathcal{M}&lt;/math&gt; on &lt;math&gt;X&lt;/math&gt; has a presentation given by an exact sequence</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">:</ins>&lt;math&gt;\bigoplus_{i,j=0} \mathcal{O}_X(s_{i,j}) \to \bigoplus_{i=0} \mathcal{O}_X(s_i) \to \mathcal{M} \to 0<ins style="font-weight: bold; text-decoration: none;">.</ins>&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The first two terms are not in general projective since &lt;math&gt;H^n(\mathbb{P}^n_S,\mathcal{O}_X(s)) \neq 0&lt;/math&gt; for &lt;math&gt;s &gt; 0&lt;/math&gt;. But, both terms are locally free, and locally flat. Both classes of sheaves can be used in place for certain computations, replacing projective resolutions for computing some derived functors.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Acyclic resolution ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Acyclic resolution ==</div></td> </tr> </table> 1234qwer1234qwer4 https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=1073715287&oldid=prev TakuyaMurata: /* See also */ lk 2022-02-24T05:47:06Z <p><span class="autocomment">See also: </span> lk</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:47, 24 February 2022</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 78:</td> <td colspan="2" class="diff-lineno">Line 78:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Hilbert's syzygy theorem]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Hilbert's syzygy theorem]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Free presentation]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* [[Free presentation]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* [[Matrix factorizations (algebra)]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Notes==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Notes==</div></td> </tr> </table> TakuyaMurata https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=1029098204&oldid=prev Kaptain-k-theory: /* Resolutions in abelian categories */ 2021-06-17T21:47:33Z <p><span class="autocomment">Resolutions in abelian categories</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:47, 17 June 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 46:</td> <td colspan="2" class="diff-lineno">Line 46:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0 \rightarrow M \rightarrow I_*, \ \ 0 \rightarrow M' \rightarrow I'_*,&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0 \rightarrow M \rightarrow I_*, \ \ 0 \rightarrow M' \rightarrow I'_*,&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is in general no functorial way of obtaining a map between &lt;math&gt;I_*&lt;/math&gt; and &lt;math&gt;I'_*&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>there is in general no functorial way of obtaining a map between &lt;math&gt;I_*&lt;/math&gt; and &lt;math&gt;I'_*&lt;/math&gt;.</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>=== Abelian categories without projective resolutions in general ===</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One class of examples of Abelian categories without projective resolutions are the categories &lt;math&gt;\text{Coh}(X)&lt;/math&gt; of [[Coherent sheaf|coherent sheaves]] on a [[Scheme (mathematics)|scheme]] &lt;math&gt;X&lt;/math&gt;. For example, if &lt;math&gt;X = \mathbb{P}^n_S&lt;/math&gt; is projective space, any coherent sheaf &lt;math&gt;\mathcal{M}&lt;/math&gt; on &lt;math&gt;X&lt;/math&gt; has a presentation given by an exact sequence&lt;blockquote&gt;&lt;math&gt;\bigoplus_{i,j=0} \mathcal{O}_X(s_{i,j}) \to \bigoplus_{i=0} \mathcal{O}_X(s_i) \to \mathcal{M} \to 0&lt;/math&gt;&lt;/blockquote&gt;The first two terms are not in general projective since &lt;math&gt;H^n(\mathbb{P}^n_S,\mathcal{O}_X(s)) \neq 0&lt;/math&gt; for &lt;math&gt;s &gt; 0&lt;/math&gt;. But, both terms are locally free, and locally flat. Both classes of sheaves can be used in place for certain computations, replacing projective resolutions for computing some derived functors. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Acyclic resolution ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Acyclic resolution ==</div></td> </tr> </table> Kaptain-k-theory https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=1000082476&oldid=prev Monkbot: Task 18 (cosmetic): eval 3 templates: hyphenate params (1×); 2021-01-13T13:51:23Z <p><a href="/wiki/User:Monkbot/task_18" class="mw-redirect" title="User:Monkbot/task 18">Task 18 (cosmetic)</a>: eval 3 templates: hyphenate params (1×);</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:51, 13 January 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 91:</td> <td colspan="2" class="diff-lineno">Line 91:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| publisher=Dover Publications</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| publisher=Dover Publications</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| isbn=978-0-486-47187-7</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| isbn=978-0-486-47187-7</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>| <del style="font-weight: bold; text-decoration: none;">origyear</del>=1985</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>| <ins style="font-weight: bold; text-decoration: none;">orig-year</ins>=1985</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Lang Algebra|edition=3}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{Lang Algebra|edition=3}}</div></td> </tr> </table> Monkbot https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=888961625&oldid=prev D.Lazard: Undid revision 888960145 by 2601:445:437F:FE66:87A:A686:FB9C:2CBB (talk) non useful 2019-03-22T14:42:01Z <p>Undid revision 888960145 by <a href="/wiki/Special:Contributions/2601:445:437F:FE66:87A:A686:FB9C:2CBB" title="Special:Contributions/2601:445:437F:FE66:87A:A686:FB9C:2CBB">2601:445:437F:FE66:87A:A686:FB9C:2CBB</a> (<a href="/w/index.php?title=User_talk:2601:445:437F:FE66:87A:A686:FB9C:2CBB&amp;action=edit&amp;redlink=1" class="new" title="User talk:2601:445:437F:FE66:87A:A686:FB9C:2CBB (page does not exist)">talk</a>) non useful</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:42, 22 March 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 7:</td> <td colspan="2" class="diff-lineno">Line 7:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Definitions===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Definitions===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a module ''M'' over a ring ''R'', a '''left resolution''' (or simply '''resolution''') of ''M'' is an [[exact sequence]] (possibly infinite) of ''R''-modules</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a module ''M'' over a ring ''R'', a '''left resolution''' (or simply '''resolution''') of ''M'' is an [[exact sequence]] (possibly infinite) of ''R''-modules</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\cdots\overset{d_{n+1}}{\longrightarrow}E_n\overset{d_n}{\longrightarrow}\cdots\overset{d_3}{\longrightarrow}E_2\overset{d_2}{\longrightarrow}E_1\overset{d_1}{\longrightarrow}E_0\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\cdots\overset{d_{n+1}}{\longrightarrow}E_n\overset{d_n}{\longrightarrow}\cdots\overset{d_3}{\longrightarrow}E_2\overset{d_2}{\longrightarrow}E_1\overset{d_1}{\longrightarrow}E_0\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The homomorphisms ''d&lt;sub&gt;i&lt;/sub&gt;'' are called boundary maps. The map ε is called an '''augmentation map'''. For succinctness, the resolution above can be written as</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The homomorphisms ''d&lt;sub&gt;i&lt;/sub&gt;'' are called boundary maps. The map ε is called an '''augmentation map'''. For succinctness, the resolution above can be written as</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;E_\bullet\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;E_\bullet\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[dual (category theory)|dual notion]] is that of a '''right resolution''' (or '''coresolution''', or simply '''resolution'''). Specifically, given a module ''M'' over a ring ''R'', a right resolution is a possibly infinite exact sequence of ''R''-modules</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[dual (category theory)|dual notion]] is that of a '''right resolution''' (or '''coresolution''', or simply '''resolution'''). Specifically, given a module ''M'' over a ring ''R'', a right resolution is a possibly infinite exact sequence of ''R''-modules</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0\longrightarrow M\overset{\varepsilon}{\longrightarrow}C^0\overset{d^0}{\longrightarrow}C^1\overset{d^1}{\longrightarrow}C^2\overset{d^2}{\longrightarrow}\cdots\overset{d^{n-1}}{\longrightarrow}C^n\overset{d^n}{\longrightarrow}\cdots,&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0\longrightarrow M\overset{\varepsilon}{\longrightarrow}C^0\overset{d^0}{\longrightarrow}C^1\overset{d^1}{\longrightarrow}C^2\overset{d^2}{\longrightarrow}\cdots\overset{d^{n-1}}{\longrightarrow}C^n\overset{d^n}{\longrightarrow}\cdots,&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each ''C&lt;sup&gt;i&lt;/sup&gt;'' is an ''R''-module (it is common to use superscripts on the objects in the resolution and the maps between them to indicate the dual nature of such a resolution). For succinctness, the resolution above can be written as</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each ''C&lt;sup&gt;i&lt;/sup&gt;'' is an ''R''-module (it is common to use superscripts on the objects in the resolution and the maps between them to indicate the dual nature of such a resolution). For succinctness, the resolution above can be written as</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0\longrightarrow M\overset{\varepsilon}{\longrightarrow}C^\bullet.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0\longrightarrow M\overset{\varepsilon}{\longrightarrow}C^\bullet.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> D.Lazard https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=888960308&oldid=prev 2601:445:437F:FE66:87A:A686:FB9C:2CBB: /* Acyclic resolution */ 2019-03-22T14:31:43Z <p><span class="autocomment">Acyclic resolution</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:31, 22 March 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 57:</td> <td colspan="2" class="diff-lineno">Line 57:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Therefore, in many situations, the notion of '''acyclic resolutions''' is used: given a [[left exact functor]] ''F'': ''A'' &amp;rarr; ''B'' between two abelian categories, a resolution</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Therefore, in many situations, the notion of '''acyclic resolutions''' is used: given a [[left exact functor]] ''F'': ''A'' &amp;rarr; ''B'' between two abelian categories, a resolution</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>of an object ''M'' of ''A'' is called ''F''-acyclic, if the [[derived functor]]s ''R''&lt;sub&gt;''i''&lt;/sub&gt;''F''(''E''&lt;sub&gt;''n''&lt;/sub&gt;) vanish for all ''i''&gt;0 and ''n''<del style="font-weight: bold; text-decoration: none;">≥0</del>. Dually, a left resolution is acyclic with respect to a right exact functor if its derived functors vanish on the objects of the resolution.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>of an object ''M'' of ''A'' is called ''F''-acyclic, if the [[derived functor]]s ''R''&lt;sub&gt;''i''&lt;/sub&gt;''F''(''E''&lt;sub&gt;''n''&lt;/sub&gt;) vanish for all ''i''<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>&gt;<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>0 and ''n''<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;≥&amp;nbsp;0</ins>. Dually, a left resolution is acyclic with respect to a right exact functor if its derived functors vanish on the objects of the resolution.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a ''R'' module ''M'', the [[tensor product]] &amp;nbsp;&amp;nbsp;&lt;math&gt;\otimes_R M&lt;/math&gt; is a right exact functor '''Mod'''(''R'') &amp;rarr; '''Mod'''(''R''). Every flat resolution is acyclic with respect to this functor. A ''flat resolution'' is acyclic for the tensor product by every ''M''. Similarly, resolutions that are acyclic for all the functors '''Hom'''(&amp;nbsp;⋅&amp;nbsp;, ''M'') are the projective resolutions and those that are acyclic for the functors '''Hom'''(''M'', &amp;nbsp;⋅&amp;nbsp;) are the injective resolutions.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For example, given a ''R'' module ''M'', the [[tensor product]] &amp;nbsp;&amp;nbsp;&lt;math&gt;\otimes_R M&lt;/math&gt; is a right exact functor '''Mod'''(''R'') &amp;rarr; '''Mod'''(''R''). Every flat resolution is acyclic with respect to this functor. A ''flat resolution'' is acyclic for the tensor product by every ''M''. Similarly, resolutions that are acyclic for all the functors '''Hom'''(&amp;nbsp;⋅&amp;nbsp;, ''M'') are the projective resolutions and those that are acyclic for the functors '''Hom'''(''M'', &amp;nbsp;⋅&amp;nbsp;) are the injective resolutions.</div></td> </tr> </table> 2601:445:437F:FE66:87A:A686:FB9C:2CBB https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=888960145&oldid=prev 2601:445:437F:FE66:87A:A686:FB9C:2CBB: /* Definitions */ 2019-03-22T14:30:21Z <p><span class="autocomment">Definitions</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:30, 22 March 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 7:</td> <td colspan="2" class="diff-lineno">Line 7:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Definitions===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Definitions===</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a module ''M'' over a ring ''R'', a '''left resolution''' (or simply '''resolution''') of ''M'' is an [[exact sequence]] (possibly infinite) of ''R''-modules</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Given a module ''M'' over a ring ''R'', a '''left resolution''' (or simply '''resolution''') of ''M'' is an [[exact sequence]] (possibly infinite) of ''R''-modules</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\cdots\overset{d_{n+1}}{\longrightarrow}E_n\overset{d_n}{\longrightarrow}\cdots\overset{d_3}{\longrightarrow}E_2\overset{d_2}{\longrightarrow}E_1\overset{d_1}{\longrightarrow}E_0\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;\cdots\overset{d_{n+1}}{\longrightarrow}E_n\overset{d_n}{\longrightarrow}\cdots\overset{d_3}{\longrightarrow}E_2\overset{d_2}{\longrightarrow}E_1\overset{d_1}{\longrightarrow}E_0\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The homomorphisms ''d&lt;sub&gt;i&lt;/sub&gt;'' are called boundary maps. The map ε is called an '''augmentation map'''. For succinctness, the resolution above can be written as</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The homomorphisms ''d&lt;sub&gt;i&lt;/sub&gt;'' are called boundary maps. The map ε is called an '''augmentation map'''. For succinctness, the resolution above can be written as</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;E_\bullet\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;E_\bullet\overset{\varepsilon}{\longrightarrow}M\longrightarrow0.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[dual (category theory)|dual notion]] is that of a '''right resolution''' (or '''coresolution''', or simply '''resolution'''). Specifically, given a module ''M'' over a ring ''R'', a right resolution is a possibly infinite exact sequence of ''R''-modules</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The [[dual (category theory)|dual notion]] is that of a '''right resolution''' (or '''coresolution''', or simply '''resolution'''). Specifically, given a module ''M'' over a ring ''R'', a right resolution is a possibly infinite exact sequence of ''R''-modules</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0\longrightarrow M\overset{\varepsilon}{\longrightarrow}C^0\overset{d^0}{\longrightarrow}C^1\overset{d^1}{\longrightarrow}C^2\overset{d^2}{\longrightarrow}\cdots\overset{d^{n-1}}{\longrightarrow}C^n\overset{d^n}{\longrightarrow}\cdots,&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0\longrightarrow M\overset{\varepsilon}{\longrightarrow}C^0\overset{d^0}{\longrightarrow}C^1\overset{d^1}{\longrightarrow}C^2\overset{d^2}{\longrightarrow}\cdots\overset{d^{n-1}}{\longrightarrow}C^n\overset{d^n}{\longrightarrow}\cdots,&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each ''C&lt;sup&gt;i&lt;/sup&gt;'' is an ''R''-module (it is common to use superscripts on the objects in the resolution and the maps between them to indicate the dual nature of such a resolution). For succinctness, the resolution above can be written as</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where each ''C&lt;sup&gt;i&lt;/sup&gt;'' is an ''R''-module (it is common to use superscripts on the objects in the resolution and the maps between them to indicate the dual nature of such a resolution). For succinctness, the resolution above can be written as</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0\longrightarrow M\overset{\varepsilon}{\longrightarrow}C^\bullet.&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>:&lt;math&gt;0\longrightarrow M\overset{\varepsilon}{\longrightarrow}C^\bullet.&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> 2601:445:437F:FE66:87A:A686:FB9C:2CBB https://en.wikipedia.org/w/index.php?title=Resolution_(algebra)&diff=841766996&oldid=prev 2601:445:437F:FE66:1932:AB5D:38EF:41E2: /* Acyclic resolution */ 2018-05-17T22:41:39Z <p><span class="autocomment">Acyclic resolution</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:41, 17 May 2018</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 62:</td> <td colspan="2" class="diff-lineno">Line 62:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This situation applies in many situations. For example, for the [[constant sheaf]] ''R'' on a [[differentiable manifold]] ''M'' can be resolved by the sheaves &lt;math&gt;\mathcal C^*(M)&lt;/math&gt; of smooth [[differential form]]s:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This situation applies in many situations. For example, for the [[constant sheaf]] ''R'' on a [[differentiable manifold]] ''M'' can be resolved by the sheaves &lt;math&gt;\mathcal C^*(M)&lt;/math&gt; of smooth [[differential form]]s:</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;0 \rightarrow R \subset \mathcal C^0(M) \stackrel d \rightarrow \mathcal C^1(M) \stackrel d \rightarrow \cdots \mathcal C^{\dim M}(M) \rightarrow 0.&lt;/math&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">: </ins>&lt;math&gt;0 \rightarrow R \subset \mathcal C^0(M) \stackrel d \rightarrow \mathcal C^1(M) \stackrel d \rightarrow \cdots \mathcal C^{\dim M}(M) \rightarrow 0.&lt;/math&gt;</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The sheaves &lt;math&gt;\mathcal C^*(M)&lt;/math&gt; are [[fine sheaf|fine sheaves]], which are known to be acyclic with respect to the [[global section]] functor &lt;math&gt;\Gamma: \mathcal F \mapsto \mathcal F(M)&lt;/math&gt;. Therefore, the [[sheaf cohomology]], which is the derived functor of the global section functor &amp;Gamma; is computed as</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The sheaves &lt;math&gt;\mathcal C^*(M)&lt;/math&gt; are [[fine sheaf|fine sheaves]], which are known to be acyclic with respect to the [[global section]] functor &lt;math&gt;\Gamma: \mathcal F \mapsto \mathcal F(M)&lt;/math&gt;. Therefore, the [[sheaf cohomology]], which is the derived functor of the global section functor &amp;Gamma; is computed as</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\mathrm H^i(M, \mathbf R) = \mathrm H^i( \mathcal C^*(M)).&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math&gt;\mathrm H^i(M, \mathbf R) = \mathrm H^i( \mathcal C^*(M)).&lt;/math&gt;</div></td> </tr> </table> 2601:445:437F:FE66:1932:AB5D:38EF:41E2