https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Helium_flash&useskin=vector&useskin=vector Helium flash - Revision history 2024-10-20T08:24:45Z Revision history for this page on the wiki MediaWiki 1.43.0-wmf.27 https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1246931161&oldid=prev JJMC89 bot III: Moving :Category:Astrophysics concepts to :Category:Concepts in astrophysics per Wikipedia:Categories for discussion/Speedy 2024-09-21T22:20:11Z <p>Moving <a href="/w/index.php?title=Category:Astrophysics_concepts&amp;action=edit&amp;redlink=1" class="new" title="Category:Astrophysics concepts (page does not exist)">Category:Astrophysics concepts</a> to <a href="/wiki/Category:Concepts_in_astrophysics" title="Category:Concepts in astrophysics">Category:Concepts in astrophysics</a> per <a href="/wiki/Wikipedia:Categories_for_discussion/Speedy" title="Wikipedia:Categories for discussion/Speedy">Wikipedia:Categories for discussion/Speedy</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:20, 21 September 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 55:</td> <td colspan="2" class="diff-lineno">Line 55:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Helium Flash}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Helium Flash}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Astrophysics</del> <del style="font-weight: bold; text-decoration: none;">concepts</del>]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Concepts</ins> <ins style="font-weight: bold; text-decoration: none;">in astrophysics</ins>]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Exotic matter]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Exotic matter]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Helium]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Helium]]</div></td> </tr> </table> JJMC89 bot III https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1241844862&oldid=prev 46.18.177.138: /* References */ Category change 2024-08-23T13:11:06Z <p><span class="autocomment">References: </span> Category change</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:11, 23 August 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 55:</td> <td colspan="2" class="diff-lineno">Line 55:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Helium Flash}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{DEFAULTSORT:Helium Flash}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<del style="font-weight: bold; text-decoration: none;">Stellar</del> <del style="font-weight: bold; text-decoration: none;">evolution</del>]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:<ins style="font-weight: bold; text-decoration: none;">Astrophysics</ins> <ins style="font-weight: bold; text-decoration: none;">concepts</ins>]]</div></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_4_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_2_0_lhs"></a>[[Category:<del style="font-weight: bold; text-decoration: none;">Astrophysics</del>]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_4_1_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_2_1_lhs"></a>[[Category:Nucleosynthesis]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_4_2_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_2_2_lhs"></a>[[Category:<del style="font-weight: bold; text-decoration: none;">Helium</del>]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Exotic matter]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Exotic matter]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_2_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_4_0_rhs"></a>[[Category:<ins style="font-weight: bold; text-decoration: none;">Helium</ins>]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_2_1_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_4_1_rhs"></a>[[Category:Nucleosynthesis]]</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_2_2_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_4_2_rhs"></a>[[Category:<ins style="font-weight: bold; text-decoration: none;">Stellar evolution</ins>]]</div></td> </tr> </table> 46.18.177.138 https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1231916917&oldid=prev Benny the Bouncer at 00:00, 1 July 2024 2024-07-01T00:00:49Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 00:00, 1 July 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Brief thermal runaway nuclear fusion in the core of low<del style="font-weight: bold; text-decoration: none;"> </del>mass stars}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Brief thermal runaway nuclear fusion in the core of low<ins style="font-weight: bold; text-decoration: none;">-</ins>mass stars}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Helium flash.svg|300px|thumb|right|Fusion of helium in the core of low<del style="font-weight: bold; text-decoration: none;"> </del>mass stars.]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Helium flash.svg|300px|thumb|right|Fusion of helium in the core of low<ins style="font-weight: bold; text-decoration: none;">-</ins>mass stars.]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low<del style="font-weight: bold; text-decoration: none;"> </del>mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low<ins style="font-weight: bold; text-decoration: none;">-</ins>mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Low-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches temperature of approximately 100 million [[kelvin]], which is hot enough to initiate helium fusion (or "helium burning") in the core.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Low-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches temperature of approximately 100 million [[kelvin]], which is hot enough to initiate helium fusion (or "helium burning") in the core.</div></td> </tr> </table> Benny the Bouncer https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1223325535&oldid=prev 91.105.17.149: Clarify that it's a temperature 2024-05-11T10:45:06Z <p>Clarify that it&#039;s a temperature</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:45, 11 May 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Low-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches approximately 100 million [[kelvin]], which is hot enough to initiate helium fusion (or "helium burning") in the core.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Low-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches<ins style="font-weight: bold; text-decoration: none;"> temperature of</ins> approximately 100 million [[kelvin]], which is hot enough to initiate helium fusion (or "helium burning") in the core.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes,{{r|End}} but during that time, produces energy at a rate comparable to the entire [[Milky Way]] galaxy.{{r|End}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes,{{r|End}} but during that time, produces energy at a rate comparable to the entire [[Milky Way]] galaxy.{{r|End}}</div></td> </tr> </table> 91.105.17.149 https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1220146505&oldid=prev Headbomb: Reverted edits by 128.135.204.242 (talk) to last version by 97.102.205.224 2024-04-22T02:38:22Z <p>Reverted edits by <a href="/wiki/Special:Contributions/128.135.204.242" title="Special:Contributions/128.135.204.242">128.135.204.242</a> (<a href="/w/index.php?title=User_talk:128.135.204.242&amp;action=edit&amp;redlink=1" class="new" title="User talk:128.135.204.242 (page does not exist)">talk</a>) to last version by 97.102.205.224</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 02:38, 22 April 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 7:</td> <td colspan="2" class="diff-lineno">Line 7:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes,{{r|End}} but during that time, produces energy at a rate comparable to the entire [[Milky Way]] galaxy.{{r|End}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes,{{r|End}} but during that time, produces energy at a rate comparable to the entire [[Milky Way]] galaxy.{{r|End}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In the case of normal low-mass stars, the vast energy release causes much of the core to come out of degeneracy, allowing it to thermally expand. This consumes most of the total energy released by the helium flash,{{r|End}} and any left-over energy is absorbed into the star's upper layers. Thus the helium flash is mostly undetectable by observation, and is described solely by astrophysical models. After the core's expansion and cooling, the star's surface rapidly cools and contracts in as little as 10,000 years until it is roughly <del style="font-weight: bold; text-decoration: none;">20</del>% of its former radius and luminosity. It is estimated that the electron-degenerate helium core weighs about 40% of the star mass and that 6% of the core is converted into carbon.&lt;ref name=End&gt;{{cite web |url=http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html |title=The End Of The Sun |first=David |last=Taylor |website=[[Northwestern University]] |quote=almost all the energy of the flash is absorbed by the titanic weight-lifting necessary to lift the core out of its white-dwarf condition.}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In the case of normal low-mass stars, the vast energy release causes much of the core to come out of degeneracy, allowing it to thermally expand. This consumes most of the total energy released by the helium flash,{{r|End}} and any left-over energy is absorbed into the star's upper layers. Thus the helium flash is mostly undetectable by observation, and is described solely by astrophysical models. After the core's expansion and cooling, the star's surface rapidly cools and contracts in as little as 10,000 years until it is roughly <ins style="font-weight: bold; text-decoration: none;">2</ins>% of its former radius and luminosity. It is estimated that the electron-degenerate helium core weighs about 40% of the star mass and that 6% of the core is converted into carbon.&lt;ref name=End&gt;{{cite web |url=http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html |title=The End Of The Sun |first=David |last=Taylor |website=[[Northwestern University]] |quote=almost all the energy of the flash is absorbed by the titanic weight-lifting necessary to lift the core out of its white-dwarf condition.}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Red giants==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Red giants==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 19:</td> <td colspan="2" class="diff-lineno">Line 19:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This runaway reaction quickly climbs to about 100 billion times the star's normal energy production (for a few seconds) until the temperature increases to the point that thermal pressure again becomes dominant, eliminating the degeneracy. The core can then expand and cool down and a stable burning of helium will continue.&lt;ref&gt;{{Cite journal| volume = 317| pages = 724–732| last = Deupree| first = R. G.|author2=R. K. Wallace| title = The core helium flash and surface abundance anomalies| journal = Astrophysical Journal| date = 1987|bibcode = 1987ApJ...317..724D| doi = 10.1086/165319| doi-access = free}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This runaway reaction quickly climbs to about 100 billion times the star's normal energy production (for a few seconds) until the temperature increases to the point that thermal pressure again becomes dominant, eliminating the degeneracy. The core can then expand and cool down and a stable burning of helium will continue.&lt;ref&gt;{{Cite journal| volume = 317| pages = 724–732| last = Deupree| first = R. G.|author2=R. K. Wallace| title = The core helium flash and surface abundance anomalies| journal = Astrophysical Journal| date = 1987|bibcode = 1987ApJ...317..724D| doi = 10.1086/165319| doi-access = free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A star with mass greater than about 2.<del style="font-weight: bold; text-decoration: none;">30</del> {{Solar mass}} starts to burn helium without its core becoming degenerate, and so does not exhibit this type of helium flash. In a very low-mass star (less than about 0.5 {{Solar mass}}), the core is never hot enough to ignite helium. The degenerate helium core will keep on contracting, and finally becomes a [[White dwarf#Stars with very low mass|helium white dwarf]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A star with mass greater than about 2.<ins style="font-weight: bold; text-decoration: none;">25</ins> {{Solar mass}} starts to burn helium without its core becoming degenerate, and so does not exhibit this type of helium flash. In a very low-mass star (less than about 0.5 {{Solar mass}}), the core is never hot enough to ignite helium. The degenerate helium core will keep on contracting, and finally becomes a [[White dwarf#Stars with very low mass|helium white dwarf]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The helium flash is directly observable on the surface by electromagnetic radiation. The flash occurs in the core deep inside the star, and the net effect will be that all released energy is absorbed by the entire core, causing the degenerate state to become nondegenerate. Earlier computations indicated that a nondisruptive mass loss would be possible in some cases,&lt;ref name="Deupree1984"&gt;{{cite journal|last1= Deupree|first1= R. G.|title= Two- and three-dimensional numerical simulations of the core helium flash|journal= The Astrophysical Journal|volume= 282|year= 1984|pages= 274|doi=10.1086/162200|bibcode= 1984ApJ...282..274D|doi-access= free}}&lt;/ref&gt; but later star modeling taking neutrino energy loss into account indicates no such mass loss.&lt;ref name="Deupree1996"&gt;{{cite journal|last1= Deupree|first1=R. G.|title= A Reexamination of the Core Helium Flash|journal= The Astrophysical Journal|volume=471|issue= 1|date= 1996-11-01|pages= 377–384|doi= 10.1086/177976|bibcode= 1996ApJ...471..377D|citeseerx= 10.1.1.31.44|s2cid=15585754 }}&lt;/ref&gt;&lt;ref&gt;{{Cite thesis |bibcode = 2009PhDT.........2M|title = Multidimensional hydrodynamic simulations of the core helium flash in low-mass stars|last1 = Mocák|first1 = M|year = 2009 |type=PhD. Thesis |publisher=Technische Universität München}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The helium flash is<ins style="font-weight: bold; text-decoration: none;"> not</ins> directly observable on the surface by electromagnetic radiation. The flash occurs in the core deep inside the star, and the net effect will be that all released energy is absorbed by the entire core, causing the degenerate state to become nondegenerate. Earlier computations indicated that a nondisruptive mass loss would be possible in some cases,&lt;ref name="Deupree1984"&gt;{{cite journal|last1= Deupree|first1= R. G.|title= Two- and three-dimensional numerical simulations of the core helium flash|journal= The Astrophysical Journal|volume= 282|year= 1984|pages= 274|doi=10.1086/162200|bibcode= 1984ApJ...282..274D|doi-access= free}}&lt;/ref&gt; but later star modeling taking neutrino energy loss into account indicates no such mass loss.&lt;ref name="Deupree1996"&gt;{{cite journal|last1= Deupree|first1=R. G.|title= A Reexamination of the Core Helium Flash|journal= The Astrophysical Journal|volume=471|issue= 1|date= 1996-11-01|pages= 377–384|doi= 10.1086/177976|bibcode= 1996ApJ...471..377D|citeseerx= 10.1.1.31.44|s2cid=15585754 }}&lt;/ref&gt;&lt;ref&gt;{{Cite thesis |bibcode = 2009PhDT.........2M|title = Multidimensional hydrodynamic simulations of the core helium flash in low-mass stars|last1 = Mocák|first1 = M|year = 2009 |type=PhD. Thesis |publisher=Technische Universität München}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In a one solar mass star, the helium flash is estimated to release about {{val|5|e=41|ul=J}},&lt;ref name="Edwards19690"&gt;{{cite journal | author=Edwards, A. C.|title= The Hydrodynamics of the Helium Flash | journal= Monthly Notices of the Royal Astronomical Society | date=1969 | volume=146 |issue= 4 | pages=445–472 | bibcode= 1969MNRAS.146..445E|doi = 10.1093/mnras/146.4.445 | doi-access= free }}&lt;/ref&gt; or about 0.3% of the energy release of a {{val|1.5|e=44|ul=J}} [[type Ia supernova]],&lt;ref name="Khokhlov1993"&gt;{{cite journal | author1=Khokhlov, A. |author2=Müller, E. |author3=Höflich, P. | title= Light curves of Type IA supernova models with different explosion mechanisms | journal= Astronomy and Astrophysics | date=1993 | volume=270 | issue=1–2 | pages=223–248 | bibcode= 1993A&amp;A...270..223K}}&lt;/ref&gt; which is triggered by an analogous [[Carbon detonation|ignition of carbon fusion]] in a carbon–oxygen white dwarf.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In a one solar mass star, the helium flash is estimated to release about {{val|5|e=41|ul=J}},&lt;ref name="Edwards19690"&gt;{{cite journal | author=Edwards, A. C.|title= The Hydrodynamics of the Helium Flash | journal= Monthly Notices of the Royal Astronomical Society | date=1969 | volume=146 |issue= 4 | pages=445–472 | bibcode= 1969MNRAS.146..445E|doi = 10.1093/mnras/146.4.445 | doi-access= free }}&lt;/ref&gt; or about 0.3% of the energy release of a {{val|1.5|e=44|ul=J}} [[type Ia supernova]],&lt;ref name="Khokhlov1993"&gt;{{cite journal | author1=Khokhlov, A. |author2=Müller, E. |author3=Höflich, P. | title= Light curves of Type IA supernova models with different explosion mechanisms | journal= Astronomy and Astrophysics | date=1993 | volume=270 | issue=1–2 | pages=223–248 | bibcode= 1993A&amp;A...270..223K}}&lt;/ref&gt; which is triggered by an analogous [[Carbon detonation|ignition of carbon fusion]] in a carbon–oxygen white dwarf.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 31:</td> <td colspan="2" class="diff-lineno">Line 31:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=={{Anchor|shell helium flash}}Shell helium flash==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=={{Anchor|shell helium flash}}Shell helium flash==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Shell helium flashes''' are a somewhat analogous but much <del style="font-weight: bold; text-decoration: none;">more</del> violent, nonrunaway helium ignition event, taking place in the absence of degenerate matter. They occur periodically in [[asymptotic giant branch]] stars in a shell outside the core. This is late in the life of a star in its giant phase. The star has burnt most of the helium available in the core, which is now composed of carbon and oxygen. Helium fusion continues in a thin shell around this core, but then turns off as helium becomes depleted. This allows hydrogen fusion to start in a layer above the helium layer. After enough additional helium accumulates, helium fusion is reignited, leading to a thermal pulse which eventually causes the star to expand and brighten temporarily (the pulse in luminosity is delayed because it takes a number of years for the energy from restarted helium fusion to reach the surface&lt;ref name = "Wood"/&gt;). Such pulses may last a few hundred years, and are thought to occur periodically every 10,<del style="font-weight: bold; text-decoration: none;">500</del> to 100,000 years.&lt;ref name = "Wood"&gt;{{Cite journal</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Shell helium flashes''' are a somewhat analogous but much <ins style="font-weight: bold; text-decoration: none;">less</ins> violent, nonrunaway helium ignition event, taking place in the absence of degenerate matter. They occur periodically in [[asymptotic giant branch]] stars in a shell outside the core. This is late in the life of a star in its giant phase. The star has burnt most of the helium available in the core, which is now composed of carbon and oxygen. Helium fusion continues in a thin shell around this core, but then turns off as helium becomes depleted. This allows hydrogen fusion to start in a layer above the helium layer. After enough additional helium accumulates, helium fusion is reignited, leading to a thermal pulse which eventually causes the star to expand and brighten temporarily (the pulse in luminosity is delayed because it takes a number of years for the energy from restarted helium fusion to reach the surface&lt;ref name = "Wood"/&gt;). Such pulses may last a few hundred years, and are thought to occur periodically every 10,<ins style="font-weight: bold; text-decoration: none;">000</ins> to 100,000 years.&lt;ref name = "Wood"&gt;{{Cite journal</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| volume = 247</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| volume = 247</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| issue = Part 1</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| issue = Part 1</div></td> </tr> </table> Headbomb https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1220139522&oldid=prev 128.135.204.242 at 01:52, 22 April 2024 2024-04-22T01:52:24Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:52, 22 April 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">High</del>-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches approximately 100 million [[kelvin]], which is hot enough to initiate helium fusion (or "helium burning") in the core.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">Low</ins>-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches approximately 100 million [[kelvin]], which is hot enough to initiate helium fusion (or "helium burning") in the core.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes,{{r|End}} but during that time, produces energy at a rate comparable to the entire [[Milky Way]] galaxy.{{r|End}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes,{{r|End}} but during that time, produces energy at a rate comparable to the entire [[Milky Way]] galaxy.{{r|End}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In the case of normal low-mass stars, the vast energy release causes much of the core to come out of degeneracy, allowing it to thermally expand. This consumes most of the total energy released by the helium flash,{{r|End}} and any left-over energy is absorbed into the star's upper layers. Thus the helium flash is mostly undetectable by observation, and is described solely by astrophysical models. After the core's expansion and cooling, the star's surface rapidly cools and contracts in as little as 10,000 years until it is roughly <del style="font-weight: bold; text-decoration: none;">2</del>% of its former radius and luminosity. It is estimated that the electron-degenerate helium core weighs about 40% of the star mass and that 6% of the core is converted into carbon.&lt;ref name=End&gt;{{cite web |url=http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html |title=The End Of The Sun |first=David |last=Taylor |website=[[Northwestern University]] |quote=almost all the energy of the flash is absorbed by the titanic weight-lifting necessary to lift the core out of its white-dwarf condition.}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In the case of normal low-mass stars, the vast energy release causes much of the core to come out of degeneracy, allowing it to thermally expand. This consumes most of the total energy released by the helium flash,{{r|End}} and any left-over energy is absorbed into the star's upper layers. Thus the helium flash is mostly undetectable by observation, and is described solely by astrophysical models. After the core's expansion and cooling, the star's surface rapidly cools and contracts in as little as 10,000 years until it is roughly <ins style="font-weight: bold; text-decoration: none;">20</ins>% of its former radius and luminosity. It is estimated that the electron-degenerate helium core weighs about 40% of the star mass and that 6% of the core is converted into carbon.&lt;ref name=End&gt;{{cite web |url=http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html |title=The End Of The Sun |first=David |last=Taylor |website=[[Northwestern University]] |quote=almost all the energy of the flash is absorbed by the titanic weight-lifting necessary to lift the core out of its white-dwarf condition.}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Red giants==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Red giants==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 19:</td> <td colspan="2" class="diff-lineno">Line 19:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This runaway reaction quickly climbs to about 100 billion times the star's normal energy production (for a few seconds) until the temperature increases to the point that thermal pressure again becomes dominant, eliminating the degeneracy. The core can then expand and cool down and a stable burning of helium will continue.&lt;ref&gt;{{Cite journal| volume = 317| pages = 724–732| last = Deupree| first = R. G.|author2=R. K. Wallace| title = The core helium flash and surface abundance anomalies| journal = Astrophysical Journal| date = 1987|bibcode = 1987ApJ...317..724D| doi = 10.1086/165319| doi-access = free}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>This runaway reaction quickly climbs to about 100 billion times the star's normal energy production (for a few seconds) until the temperature increases to the point that thermal pressure again becomes dominant, eliminating the degeneracy. The core can then expand and cool down and a stable burning of helium will continue.&lt;ref&gt;{{Cite journal| volume = 317| pages = 724–732| last = Deupree| first = R. G.|author2=R. K. Wallace| title = The core helium flash and surface abundance anomalies| journal = Astrophysical Journal| date = 1987|bibcode = 1987ApJ...317..724D| doi = 10.1086/165319| doi-access = free}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A star with mass greater than about 2.<del style="font-weight: bold; text-decoration: none;">25</del> {{Solar mass}} starts to burn helium without its core becoming degenerate, and so does not exhibit this type of helium flash. In a very low-mass star (less than about 0.5 {{Solar mass}}), the core is never hot enough to ignite helium. The degenerate helium core will keep on contracting, and finally becomes a [[White dwarf#Stars with very low mass|helium white dwarf]].</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A star with mass greater than about 2.<ins style="font-weight: bold; text-decoration: none;">30</ins> {{Solar mass}} starts to burn helium without its core becoming degenerate, and so does not exhibit this type of helium flash. In a very low-mass star (less than about 0.5 {{Solar mass}}), the core is never hot enough to ignite helium. The degenerate helium core will keep on contracting, and finally becomes a [[White dwarf#Stars with very low mass|helium white dwarf]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The helium flash is<del style="font-weight: bold; text-decoration: none;"> not</del> directly observable on the surface by electromagnetic radiation. The flash occurs in the core deep inside the star, and the net effect will be that all released energy is absorbed by the entire core, causing the degenerate state to become nondegenerate. Earlier computations indicated that a nondisruptive mass loss would be possible in some cases,&lt;ref name="Deupree1984"&gt;{{cite journal|last1= Deupree|first1= R. G.|title= Two- and three-dimensional numerical simulations of the core helium flash|journal= The Astrophysical Journal|volume= 282|year= 1984|pages= 274|doi=10.1086/162200|bibcode= 1984ApJ...282..274D|doi-access= free}}&lt;/ref&gt; but later star modeling taking neutrino energy loss into account indicates no such mass loss.&lt;ref name="Deupree1996"&gt;{{cite journal|last1= Deupree|first1=R. G.|title= A Reexamination of the Core Helium Flash|journal= The Astrophysical Journal|volume=471|issue= 1|date= 1996-11-01|pages= 377–384|doi= 10.1086/177976|bibcode= 1996ApJ...471..377D|citeseerx= 10.1.1.31.44|s2cid=15585754 }}&lt;/ref&gt;&lt;ref&gt;{{Cite thesis |bibcode = 2009PhDT.........2M|title = Multidimensional hydrodynamic simulations of the core helium flash in low-mass stars|last1 = Mocák|first1 = M|year = 2009 |type=PhD. Thesis |publisher=Technische Universität München}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The helium flash is directly observable on the surface by electromagnetic radiation. The flash occurs in the core deep inside the star, and the net effect will be that all released energy is absorbed by the entire core, causing the degenerate state to become nondegenerate. Earlier computations indicated that a nondisruptive mass loss would be possible in some cases,&lt;ref name="Deupree1984"&gt;{{cite journal|last1= Deupree|first1= R. G.|title= Two- and three-dimensional numerical simulations of the core helium flash|journal= The Astrophysical Journal|volume= 282|year= 1984|pages= 274|doi=10.1086/162200|bibcode= 1984ApJ...282..274D|doi-access= free}}&lt;/ref&gt; but later star modeling taking neutrino energy loss into account indicates no such mass loss.&lt;ref name="Deupree1996"&gt;{{cite journal|last1= Deupree|first1=R. G.|title= A Reexamination of the Core Helium Flash|journal= The Astrophysical Journal|volume=471|issue= 1|date= 1996-11-01|pages= 377–384|doi= 10.1086/177976|bibcode= 1996ApJ...471..377D|citeseerx= 10.1.1.31.44|s2cid=15585754 }}&lt;/ref&gt;&lt;ref&gt;{{Cite thesis |bibcode = 2009PhDT.........2M|title = Multidimensional hydrodynamic simulations of the core helium flash in low-mass stars|last1 = Mocák|first1 = M|year = 2009 |type=PhD. Thesis |publisher=Technische Universität München}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In a one solar mass star, the helium flash is estimated to release about {{val|5|e=41|ul=J}},&lt;ref name="Edwards19690"&gt;{{cite journal | author=Edwards, A. C.|title= The Hydrodynamics of the Helium Flash | journal= Monthly Notices of the Royal Astronomical Society | date=1969 | volume=146 |issue= 4 | pages=445–472 | bibcode= 1969MNRAS.146..445E|doi = 10.1093/mnras/146.4.445 | doi-access= free }}&lt;/ref&gt; or about 0.3% of the energy release of a {{val|1.5|e=44|ul=J}} [[type Ia supernova]],&lt;ref name="Khokhlov1993"&gt;{{cite journal | author1=Khokhlov, A. |author2=Müller, E. |author3=Höflich, P. | title= Light curves of Type IA supernova models with different explosion mechanisms | journal= Astronomy and Astrophysics | date=1993 | volume=270 | issue=1–2 | pages=223–248 | bibcode= 1993A&amp;A...270..223K}}&lt;/ref&gt; which is triggered by an analogous [[Carbon detonation|ignition of carbon fusion]] in a carbon–oxygen white dwarf.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In a one solar mass star, the helium flash is estimated to release about {{val|5|e=41|ul=J}},&lt;ref name="Edwards19690"&gt;{{cite journal | author=Edwards, A. C.|title= The Hydrodynamics of the Helium Flash | journal= Monthly Notices of the Royal Astronomical Society | date=1969 | volume=146 |issue= 4 | pages=445–472 | bibcode= 1969MNRAS.146..445E|doi = 10.1093/mnras/146.4.445 | doi-access= free }}&lt;/ref&gt; or about 0.3% of the energy release of a {{val|1.5|e=44|ul=J}} [[type Ia supernova]],&lt;ref name="Khokhlov1993"&gt;{{cite journal | author1=Khokhlov, A. |author2=Müller, E. |author3=Höflich, P. | title= Light curves of Type IA supernova models with different explosion mechanisms | journal= Astronomy and Astrophysics | date=1993 | volume=270 | issue=1–2 | pages=223–248 | bibcode= 1993A&amp;A...270..223K}}&lt;/ref&gt; which is triggered by an analogous [[Carbon detonation|ignition of carbon fusion]] in a carbon–oxygen white dwarf.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 31:</td> <td colspan="2" class="diff-lineno">Line 31:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=={{Anchor|shell helium flash}}Shell helium flash==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=={{Anchor|shell helium flash}}Shell helium flash==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Shell helium flashes''' are a somewhat analogous but much <del style="font-weight: bold; text-decoration: none;">less</del> violent, nonrunaway helium ignition event, taking place in the absence of degenerate matter. They occur periodically in [[asymptotic giant branch]] stars in a shell outside the core. This is late in the life of a star in its giant phase. The star has burnt most of the helium available in the core, which is now composed of carbon and oxygen. Helium fusion continues in a thin shell around this core, but then turns off as helium becomes depleted. This allows hydrogen fusion to start in a layer above the helium layer. After enough additional helium accumulates, helium fusion is reignited, leading to a thermal pulse which eventually causes the star to expand and brighten temporarily (the pulse in luminosity is delayed because it takes a number of years for the energy from restarted helium fusion to reach the surface&lt;ref name = "Wood"/&gt;). Such pulses may last a few hundred years, and are thought to occur periodically every 10,<del style="font-weight: bold; text-decoration: none;">000</del> to 100,000 years.&lt;ref name = "Wood"&gt;{{Cite journal</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Shell helium flashes''' are a somewhat analogous but much <ins style="font-weight: bold; text-decoration: none;">more</ins> violent, nonrunaway helium ignition event, taking place in the absence of degenerate matter. They occur periodically in [[asymptotic giant branch]] stars in a shell outside the core. This is late in the life of a star in its giant phase. The star has burnt most of the helium available in the core, which is now composed of carbon and oxygen. Helium fusion continues in a thin shell around this core, but then turns off as helium becomes depleted. This allows hydrogen fusion to start in a layer above the helium layer. After enough additional helium accumulates, helium fusion is reignited, leading to a thermal pulse which eventually causes the star to expand and brighten temporarily (the pulse in luminosity is delayed because it takes a number of years for the energy from restarted helium fusion to reach the surface&lt;ref name = "Wood"/&gt;). Such pulses may last a few hundred years, and are thought to occur periodically every 10,<ins style="font-weight: bold; text-decoration: none;">500</ins> to 100,000 years.&lt;ref name = "Wood"&gt;{{Cite journal</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| volume = 247</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| volume = 247</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| issue = Part 1</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| issue = Part 1</div></td> </tr> </table> 128.135.204.242 https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1220139266&oldid=prev 128.135.204.242 at 01:50, 22 April 2024 2024-04-22T01:50:37Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:50, 22 April 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Low</del>-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches approximately 100 million [[kelvin]], which is hot enough to initiate helium fusion (or "helium burning") in the core.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">High</ins>-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. Subsequent hydrogen shell fusion further increases the mass of the core until it reaches approximately 100 million [[kelvin]], which is hot enough to initiate helium fusion (or "helium burning") in the core.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes,{{r|End}} but during that time, produces energy at a rate comparable to the entire [[Milky Way]] galaxy.{{r|End}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in the pressure of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction which quickly spans the entire core. This produces a flash of very intense helium fusion that lasts only a few minutes,{{r|End}} but during that time, produces energy at a rate comparable to the entire [[Milky Way]] galaxy.{{r|End}}</div></td> </tr> </table> 128.135.204.242 https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1215446075&oldid=prev 97.102.205.224: Correct statement about duration of helium flash, with ref. 2024-03-25T05:07:10Z <p>Correct statement about duration of helium flash, with ref.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:07, 25 March 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''helium flash''' is a very brief [[thermal runaway]] [[nuclear fusion]] of large quantities of [[helium]] into [[carbon]] through the [[triple-alpha process]] in the core of low mass [[star]]s (between 0.8 [[solar mass]]es ({{Solar mass|link=yes}}) and 2.0 {{Solar mass}}&lt;ref&gt;{{cite book|type=lecture notes|title=Stellar Structure and Evolution|first=Onno|last=Pols|date=September 2009|chapter-url=https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-url=https://web.archive.org/web/20190520071013/https://astro.uni-bonn.de/~nlanger/siu_web/ssescript/new/chapter9.pdf|archive-date=20 May 2019|chapter=Chapter 9: Post-main sequence evolution through helium burning}}&lt;/ref&gt;) during their [[red giant]] phase. The [[Sun]] is predicted to experience a flash 1.2 billion years after it leaves the [[main sequence]]. A much rarer runaway helium fusion process can also occur on the surface of [[Accretion (astrophysics)|accreting]] [[white dwarf]] stars.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Low-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. <del style="font-weight: bold; text-decoration: none;">This</del> <del style="font-weight: bold; text-decoration: none;">increases</del> <del style="font-weight: bold; text-decoration: none;">the</del> <del style="font-weight: bold; text-decoration: none;">density</del> <del style="font-weight: bold; text-decoration: none;">and</del> <del style="font-weight: bold; text-decoration: none;">temperature</del> of the core until it reaches approximately 100 million [[kelvin]], which is hot enough to <del style="font-weight: bold; text-decoration: none;">cause</del> helium fusion (or "helium burning") in the core.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Low-mass stars do not produce enough [[gravity|gravitational]] pressure to initiate normal helium fusion. As the hydrogen in the core is exhausted, some of the helium left behind is instead compacted into [[degenerate matter]], supported against [[gravitational collapse]] by [[quantum mechanics|quantum mechanical]] pressure rather than [[ideal gas law|thermal pressure]]. <ins style="font-weight: bold; text-decoration: none;">Subsequent</ins> <ins style="font-weight: bold; text-decoration: none;">hydrogen</ins> <ins style="font-weight: bold; text-decoration: none;">shell</ins> <ins style="font-weight: bold; text-decoration: none;">fusion further increases the</ins> <ins style="font-weight: bold; text-decoration: none;">mass</ins> of the core until it reaches approximately 100 million [[kelvin]], which is hot enough to <ins style="font-weight: bold; text-decoration: none;">initiate</ins> helium fusion (or "helium burning") in the core.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in <del style="font-weight: bold; text-decoration: none;">volume</del> of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction. This produces a flash of very intense helium fusion that lasts only a few <del style="font-weight: bold; text-decoration: none;">thousand years (instantaneous on astronomical scales)</del>, but<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">in</del> <del style="font-weight: bold; text-decoration: none;">a matter of</del> <del style="font-weight: bold; text-decoration: none;">seconds</del>, <del style="font-weight: bold; text-decoration: none;"> emits</del> energy at a rate comparable to the entire [[Milky Way]] galaxy.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>However, a fundamental quality of degenerate matter is that increases in temperature do not produce an increase in <ins style="font-weight: bold; text-decoration: none;">the pressure</ins> of the matter until the thermal pressure becomes so very high that it exceeds degeneracy pressure. In main sequence stars, [[hydrostatic equilibrium|thermal expansion]] regulates the core temperature, but in degenerate cores, this does not occur. Helium fusion increases the temperature, which increases the fusion rate, which further increases the temperature in a runaway reaction<ins style="font-weight: bold; text-decoration: none;"> which quickly spans the entire core</ins>. This produces a flash of very intense helium fusion that lasts only a few <ins style="font-weight: bold; text-decoration: none;">minutes</ins>,<ins style="font-weight: bold; text-decoration: none;">{{r|End}}</ins> but <ins style="font-weight: bold; text-decoration: none;">during</ins> <ins style="font-weight: bold; text-decoration: none;">that</ins> <ins style="font-weight: bold; text-decoration: none;">time</ins>, <ins style="font-weight: bold; text-decoration: none;">produces</ins> energy at a rate comparable to the entire [[Milky Way]] galaxy.<ins style="font-weight: bold; text-decoration: none;">{{r|End}}</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In the case of normal low-mass stars, the vast energy release causes much of the core to come out of degeneracy, allowing it to thermally expand<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">however,</del> <del style="font-weight: bold; text-decoration: none;">consuming</del> <del style="font-weight: bold; text-decoration: none;">as</del> <del style="font-weight: bold; text-decoration: none;">much</del> <del style="font-weight: bold; text-decoration: none;">energy as</del> the total energy released by the helium flash, and any left-over energy is absorbed into the star's upper layers. Thus the helium flash is mostly undetectable by observation, and is described solely by astrophysical models. After the core's expansion and cooling, the star's surface rapidly cools and contracts in as little as 10,000 years until it is roughly 2% of its former radius and luminosity. It is estimated that the electron-degenerate helium core weighs about 40% of the star mass and that 6% of the core is converted into carbon.&lt;ref&gt;{{cite web |url=<del style="font-weight: bold; text-decoration: none;"> </del>http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html |title=<del style="font-weight: bold; text-decoration: none;"> </del>The End Of The Sun |first=<del style="font-weight: bold; text-decoration: none;"> </del>David |last=<del style="font-weight: bold; text-decoration: none;"> </del>Taylor |website= <del style="font-weight: bold; text-decoration: none;">North</del> <del style="font-weight: bold; text-decoration: none;">Western</del> }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In the case of normal low-mass stars, the vast energy release causes much of the core to come out of degeneracy, allowing it to thermally expand<ins style="font-weight: bold; text-decoration: none;">.</ins> <ins style="font-weight: bold; text-decoration: none;">This</ins> <ins style="font-weight: bold; text-decoration: none;">consumes</ins> <ins style="font-weight: bold; text-decoration: none;">most</ins> <ins style="font-weight: bold; text-decoration: none;">of</ins> the total energy released by the helium flash,<ins style="font-weight: bold; text-decoration: none;">{{r|End}}</ins> and any left-over energy is absorbed into the star's upper layers. Thus the helium flash is mostly undetectable by observation, and is described solely by astrophysical models. After the core's expansion and cooling, the star's surface rapidly cools and contracts in as little as 10,000 years until it is roughly 2% of its former radius and luminosity. It is estimated that the electron-degenerate helium core weighs about 40% of the star mass and that 6% of the core is converted into carbon.&lt;ref<ins style="font-weight: bold; text-decoration: none;"> name=End</ins>&gt;{{cite web |url=http://faculty.wcas.northwestern.edu/~infocom/The%20Website/end.html |title=The End Of The Sun |first=David |last=Taylor |website=<ins style="font-weight: bold; text-decoration: none;">[[Northwestern</ins> <ins style="font-weight: bold; text-decoration: none;">University]]</ins> <ins style="font-weight: bold; text-decoration: none;">|quote=almost</ins> <ins style="font-weight: bold; text-decoration: none;">all the energy of the flash is absorbed by the titanic weight-lifting necessary to lift the core out of its white-dwarf condition.</ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Red giants==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Red giants==</div></td> </tr> </table> 97.102.205.224 https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1196833252&oldid=prev Patchworkpieces: /* Red giants */Specifying the nature of Sakurai's Object 2024-01-18T17:08:10Z <p><span class="autocomment">Red giants: </span>Specifying the nature of Sakurai&#039;s Object</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:08, 18 January 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 10:</td> <td colspan="2" class="diff-lineno">Line 10:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Red giants==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Red giants==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:White Dwarf Resurrection.jpg|thumb|[[Sakurai's Object]] is a [[white dwarf]] undergoing a helium flash.&lt;ref&gt;{{cite web|title=White Dwarf Resurrection|url=http://www.eso.org/public/images/potw1531a/|access-date=3 August 2015}}&lt;/ref&gt;]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:White Dwarf Resurrection.jpg|thumb|[[Sakurai's Object]] is a [[white dwarf]] undergoing a helium<ins style="font-weight: bold; text-decoration: none;"> shell</ins> flash.&lt;ref&gt;{{cite web|title=White Dwarf Resurrection|url=http://www.eso.org/public/images/potw1531a/|access-date=3 August 2015}}&lt;/ref&gt;]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>During the [[red giant]] phase of [[stellar evolution]] in stars with less than 2.0 {{Solar mass}} the [[nuclear fusion]] of hydrogen ceases in the core as it is depleted, leaving a helium-rich core. While fusion of hydrogen continues in the star's shell causing a continuation of the accumulation of helium in the core, making the core denser, the temperature still is unable to reach the level required for helium fusion, as happens in more massive stars. Thus the thermal pressure from fusion is no longer sufficient to counter the gravitational collapse and create the [[hydrostatic equilibrium]] found in most stars. This causes the star to start contracting and increasing in temperature until it eventually becomes compressed enough for the helium core to become [[degenerate matter]]. This degeneracy pressure is finally sufficient to stop further collapse of the most central material but the rest of the core continues to contract and the temperature continues to rise until it reaches a point ({{val|p=≈|1|e=8|ul=K}}) at which the helium can ignite and start to fuse.&lt;ref name=Hansen2004&gt;{{cite book|title=Stellar Interiors - Physical Principles, Structure, and Evolution|url=https://archive.org/details/stellarinteriors00hans_446|url-access=limited|last1=Hansen|first1=Carl J.|last2=Kawaler|first2=Steven D.|last3=Trimble|first3=Virginia|isbn=978-0387200897 |date=2004|edition=2|publisher=Springer|pages=[https://archive.org/details/stellarinteriors00hans_446/page/n73 62]–5}}&lt;/ref&gt;&lt;ref name=Seeds2012&gt;{{cite book|title=Foundations of Astronomy|last1=Seeds|first1=Michael A.|last2=Backman|first2=Dana E.|pages=249–51|date=2012|edition=12|publisher=[[Cengage Learning]]|isbn=978-1133103769}}&lt;/ref&gt;&lt;ref name=Karttunen2007&gt;{{cite book|title=Fundamental Astronomy|url=https://archive.org/details/fundamentalastro00kart_346|url-access=limited|isbn=978-3540341437|edition=5|page=[https://archive.org/details/fundamentalastro00kart_346/page/n251 249]|editor-first=Hannu|editor-last=Karttunen|editor2-first=Pekka|editor2-last=Kröger|editor3-first=Heikki|editor3-last=Oja|editor4-first=Markku|editor4-last=Poutanen|editor5-first=Karl Johan|editor5-last=Donner|publisher=Springer|date=2007-06-27}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>During the [[red giant]] phase of [[stellar evolution]] in stars with less than 2.0 {{Solar mass}} the [[nuclear fusion]] of hydrogen ceases in the core as it is depleted, leaving a helium-rich core. While fusion of hydrogen continues in the star's shell causing a continuation of the accumulation of helium in the core, making the core denser, the temperature still is unable to reach the level required for helium fusion, as happens in more massive stars. Thus the thermal pressure from fusion is no longer sufficient to counter the gravitational collapse and create the [[hydrostatic equilibrium]] found in most stars. This causes the star to start contracting and increasing in temperature until it eventually becomes compressed enough for the helium core to become [[degenerate matter]]. This degeneracy pressure is finally sufficient to stop further collapse of the most central material but the rest of the core continues to contract and the temperature continues to rise until it reaches a point ({{val|p=≈|1|e=8|ul=K}}) at which the helium can ignite and start to fuse.&lt;ref name=Hansen2004&gt;{{cite book|title=Stellar Interiors - Physical Principles, Structure, and Evolution|url=https://archive.org/details/stellarinteriors00hans_446|url-access=limited|last1=Hansen|first1=Carl J.|last2=Kawaler|first2=Steven D.|last3=Trimble|first3=Virginia|isbn=978-0387200897 |date=2004|edition=2|publisher=Springer|pages=[https://archive.org/details/stellarinteriors00hans_446/page/n73 62]–5}}&lt;/ref&gt;&lt;ref name=Seeds2012&gt;{{cite book|title=Foundations of Astronomy|last1=Seeds|first1=Michael A.|last2=Backman|first2=Dana E.|pages=249–51|date=2012|edition=12|publisher=[[Cengage Learning]]|isbn=978-1133103769}}&lt;/ref&gt;&lt;ref name=Karttunen2007&gt;{{cite book|title=Fundamental Astronomy|url=https://archive.org/details/fundamentalastro00kart_346|url-access=limited|isbn=978-3540341437|edition=5|page=[https://archive.org/details/fundamentalastro00kart_346/page/n251 249]|editor-first=Hannu|editor-last=Karttunen|editor2-first=Pekka|editor2-last=Kröger|editor3-first=Heikki|editor3-last=Oja|editor4-first=Markku|editor4-last=Poutanen|editor5-first=Karl Johan|editor5-last=Donner|publisher=Springer|date=2007-06-27}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> Patchworkpieces https://en.wikipedia.org/w/index.php?title=Helium_flash&diff=1191465011&oldid=prev Countercheck: delinked duplicate internal link 2023-12-23T18:43:34Z <p>delinked duplicate internal link</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:43, 23 December 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 23:</td> <td colspan="2" class="diff-lineno">Line 23:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The helium flash is not directly observable on the surface by electromagnetic radiation. The flash occurs in the core deep inside the star, and the net effect will be that all released energy is absorbed by the entire core, causing the degenerate state to become nondegenerate. Earlier computations indicated that a nondisruptive mass loss would be possible in some cases,&lt;ref name="Deupree1984"&gt;{{cite journal|last1= Deupree|first1= R. G.|title= Two- and three-dimensional numerical simulations of the core helium flash|journal= The Astrophysical Journal|volume= 282|year= 1984|pages= 274|doi=10.1086/162200|bibcode= 1984ApJ...282..274D|doi-access= free}}&lt;/ref&gt; but later star modeling taking neutrino energy loss into account indicates no such mass loss.&lt;ref name="Deupree1996"&gt;{{cite journal|last1= Deupree|first1=R. G.|title= A Reexamination of the Core Helium Flash|journal= The Astrophysical Journal|volume=471|issue= 1|date= 1996-11-01|pages= 377–384|doi= 10.1086/177976|bibcode= 1996ApJ...471..377D|citeseerx= 10.1.1.31.44|s2cid=15585754 }}&lt;/ref&gt;&lt;ref&gt;{{Cite thesis |bibcode = 2009PhDT.........2M|title = Multidimensional hydrodynamic simulations of the core helium flash in low-mass stars|last1 = Mocák|first1 = M|year = 2009 |type=PhD. Thesis |publisher=Technische Universität München}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The helium flash is not directly observable on the surface by electromagnetic radiation. The flash occurs in the core deep inside the star, and the net effect will be that all released energy is absorbed by the entire core, causing the degenerate state to become nondegenerate. Earlier computations indicated that a nondisruptive mass loss would be possible in some cases,&lt;ref name="Deupree1984"&gt;{{cite journal|last1= Deupree|first1= R. G.|title= Two- and three-dimensional numerical simulations of the core helium flash|journal= The Astrophysical Journal|volume= 282|year= 1984|pages= 274|doi=10.1086/162200|bibcode= 1984ApJ...282..274D|doi-access= free}}&lt;/ref&gt; but later star modeling taking neutrino energy loss into account indicates no such mass loss.&lt;ref name="Deupree1996"&gt;{{cite journal|last1= Deupree|first1=R. G.|title= A Reexamination of the Core Helium Flash|journal= The Astrophysical Journal|volume=471|issue= 1|date= 1996-11-01|pages= 377–384|doi= 10.1086/177976|bibcode= 1996ApJ...471..377D|citeseerx= 10.1.1.31.44|s2cid=15585754 }}&lt;/ref&gt;&lt;ref&gt;{{Cite thesis |bibcode = 2009PhDT.........2M|title = Multidimensional hydrodynamic simulations of the core helium flash in low-mass stars|last1 = Mocák|first1 = M|year = 2009 |type=PhD. Thesis |publisher=Technische Universität München}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In a one solar mass star, the helium flash is estimated to release about {{val|5|e=41|ul=J}},&lt;ref name="Edwards19690"&gt;{{cite journal | author=Edwards, A. C.|title= The Hydrodynamics of the Helium Flash | journal= Monthly Notices of the Royal Astronomical Society | date=1969 | volume=146 |issue= 4 | pages=445–472 | bibcode= 1969MNRAS.146..445E|doi = 10.1093/mnras/146.4.445 | doi-access= free }}&lt;/ref&gt; or about 0.3% of the energy release of a {{val|1.5|e=44|ul=J}} [[type Ia supernova]],&lt;ref name="Khokhlov1993"&gt;{{cite journal | author1=Khokhlov, A. |author2=Müller, E. |author3=Höflich, P. | title= Light curves of Type IA supernova models with different explosion mechanisms | journal= Astronomy and Astrophysics | date=1993 | volume=270 | issue=1–2 | pages=223–248 | bibcode= 1993A&amp;A...270..223K}}&lt;/ref&gt; which is triggered by an analogous [[Carbon detonation|ignition of carbon fusion]] in a carbon–oxygen <del style="font-weight: bold; text-decoration: none;">[[</del>white dwarf<del style="font-weight: bold; text-decoration: none;">]]</del>.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In a one solar mass star, the helium flash is estimated to release about {{val|5|e=41|ul=J}},&lt;ref name="Edwards19690"&gt;{{cite journal | author=Edwards, A. C.|title= The Hydrodynamics of the Helium Flash | journal= Monthly Notices of the Royal Astronomical Society | date=1969 | volume=146 |issue= 4 | pages=445–472 | bibcode= 1969MNRAS.146..445E|doi = 10.1093/mnras/146.4.445 | doi-access= free }}&lt;/ref&gt; or about 0.3% of the energy release of a {{val|1.5|e=44|ul=J}} [[type Ia supernova]],&lt;ref name="Khokhlov1993"&gt;{{cite journal | author1=Khokhlov, A. |author2=Müller, E. |author3=Höflich, P. | title= Light curves of Type IA supernova models with different explosion mechanisms | journal= Astronomy and Astrophysics | date=1993 | volume=270 | issue=1–2 | pages=223–248 | bibcode= 1993A&amp;A...270..223K}}&lt;/ref&gt; which is triggered by an analogous [[Carbon detonation|ignition of carbon fusion]] in a carbon–oxygen white dwarf.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Binary white dwarfs==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Binary white dwarfs==</div></td> </tr> </table> Countercheck