https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Flat-field_correction&useskin=vector&useskin=vector Flat-field correction - Revision history 2024-10-22T16:29:02Z Revision history for this page on the wiki MediaWiki 1.43.0-wmf.27 https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1219035733&oldid=prev InternetArchiveBot: Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 2024-04-15T10:40:33Z <p>Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:40, 15 April 2024</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 8:</td> <td colspan="2" class="diff-lineno">Line 8:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Flat fielding refers to the process of compensating for different [[Gain (electronics)|gains]] and [[dark current (physics)|dark currents]] in a detector. Once a detector has been appropriately flat-fielded, a uniform signal will create a uniform output (hence flat-field). This then means any further signal is due to the phenomenon being detected and not a [[systematic error]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Flat fielding refers to the process of compensating for different [[Gain (electronics)|gains]] and [[dark current (physics)|dark currents]] in a detector. Once a detector has been appropriately flat-fielded, a uniform signal will create a uniform output (hence flat-field). This then means any further signal is due to the phenomenon being detected and not a [[systematic error]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A flat-field image is acquired by imaging a uniformly-illuminated screen, thus producing an image of uniform color and brightness across the frame. For handheld cameras, the screen could be a piece of paper at arm's length, but a telescope will frequently image a clear patch of sky at twilight, when the illumination is uniform and there are few, if any, stars visible.&lt;ref&gt;{{Cite web|url=http://www.astronomie-und-internet.de/docs/Creating%20a%20Flatfield%20Calibrating%20Image.pdf|title=Creating a Flatfield Calibration Image<del style="font-weight: bold; text-decoration: none;"> </del>|author=Frederic V. Hessman<del style="font-weight: bold; text-decoration: none;"> </del>|author2=Eckart Modrow<del style="font-weight: bold; text-decoration: none;"> </del>|date=2006-11-21|website=|access-date=2019-10-14}}&lt;/ref&gt; Once the images are acquired, processing can begin.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A flat-field image is acquired by imaging a uniformly-illuminated screen, thus producing an image of uniform color and brightness across the frame. For handheld cameras, the screen could be a piece of paper at arm's length, but a telescope will frequently image a clear patch of sky at twilight, when the illumination is uniform and there are few, if any, stars visible.&lt;ref&gt;{{Cite web|url=http://www.astronomie-und-internet.de/docs/Creating%20a%20Flatfield%20Calibrating%20Image.pdf|title=Creating a Flatfield Calibration Image|author=Frederic V. Hessman|author2=Eckart Modrow|date=2006-11-21|website=|access-date=2019-10-14<ins style="font-weight: bold; text-decoration: none;">|archive-date=2016-11-30|archive-url=https://web.archive.org/web/20161130155351/http://www.astronomie-und-internet.de/docs/Creating%20a%20Flatfield%20Calibrating%20Image.pdf|url-status=dead</ins>}}&lt;/ref&gt; Once the images are acquired, processing can begin.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A flat-field consists of two numbers for each pixel, the pixel's gain and its dark current (or [[dark frame]]). The pixel's gain is how the amount of signal given by the detector varies as a function of the amount of light (or equivalent). The gain is almost always a linear variable, as such the gain is given simply as the ratio of the input and output signals. The dark-current is the amount of signal given out by the detector when there is no incident light (hence dark frame). In many detectors this can also be a function of time, for example in astronomical telescopes it is common to take a dark-frame of the same time as the planned light exposure. The gain and dark-frame for optical systems can also be established by using a series of [[neutral density filter]]s to give input/output signal information and applying a least squares fit to obtain the values for the dark current and gain.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A flat-field consists of two numbers for each pixel, the pixel's gain and its dark current (or [[dark frame]]). The pixel's gain is how the amount of signal given by the detector varies as a function of the amount of light (or equivalent). The gain is almost always a linear variable, as such the gain is given simply as the ratio of the input and output signals. The dark-current is the amount of signal given out by the detector when there is no incident light (hence dark frame). In many detectors this can also be a function of time, for example in astronomical telescopes it is common to take a dark-frame of the same time as the planned light exposure. The gain and dark-frame for optical systems can also be established by using a series of [[neutral density filter]]s to give input/output signal information and applying a least squares fit to obtain the values for the dark current and gain.</div></td> </tr> </table> InternetArchiveBot https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1175368034&oldid=prev Trappist the monk: cite repair; 2023-09-14T15:39:58Z <p>cite repair;</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 15:39, 14 September 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 8:</td> <td colspan="2" class="diff-lineno">Line 8:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Flat fielding refers to the process of compensating for different [[Gain (electronics)|gains]] and [[dark current (physics)|dark currents]] in a detector. Once a detector has been appropriately flat-fielded, a uniform signal will create a uniform output (hence flat-field). This then means any further signal is due to the phenomenon being detected and not a [[systematic error]].</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Flat fielding refers to the process of compensating for different [[Gain (electronics)|gains]] and [[dark current (physics)|dark currents]] in a detector. Once a detector has been appropriately flat-fielded, a uniform signal will create a uniform output (hence flat-field). This then means any further signal is due to the phenomenon being detected and not a [[systematic error]].</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>A flat-field image is acquired by imaging a uniformly-illuminated screen, thus producing an image of uniform color and brightness across the frame. For handheld cameras, the screen could be a piece of paper at arm's length, but a telescope will frequently image a clear patch of sky at twilight, when the illumination is uniform and there are few, if any, stars visible.&lt;ref&gt;{{Cite web|url=http://www.astronomie-und-internet.de/docs/Creating%20a%20Flatfield%20Calibrating%20Image.pdf|title=Creating a Flatfield Calibration Image|<del style="font-weight: bold; text-decoration: none;">last</del>=Hessman <del style="font-weight: bold; text-decoration: none;">&amp;</del> Modrow|date=2006-11-21|website<del style="font-weight: bold; text-decoration: none;">=|url-status=live|archive-url=|archive-date</del>=|access-date=2019-10-14}}&lt;/ref&gt; Once the images are acquired, processing can begin.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>A flat-field image is acquired by imaging a uniformly-illuminated screen, thus producing an image of uniform color and brightness across the frame. For handheld cameras, the screen could be a piece of paper at arm's length, but a telescope will frequently image a clear patch of sky at twilight, when the illumination is uniform and there are few, if any, stars visible.&lt;ref&gt;{{Cite web|url=http://www.astronomie-und-internet.de/docs/Creating%20a%20Flatfield%20Calibrating%20Image.pdf|title=Creating a Flatfield Calibration Image<ins style="font-weight: bold; text-decoration: none;"> </ins>|<ins style="font-weight: bold; text-decoration: none;">author</ins>=<ins style="font-weight: bold; text-decoration: none;">Frederic V. </ins>Hessman <ins style="font-weight: bold; text-decoration: none;">|author2=Eckart</ins> Modrow<ins style="font-weight: bold; text-decoration: none;"> </ins>|date=2006-11-21|website=|access-date=2019-10-14}}&lt;/ref&gt; Once the images are acquired, processing can begin.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A flat-field consists of two numbers for each pixel, the pixel's gain and its dark current (or [[dark frame]]). The pixel's gain is how the amount of signal given by the detector varies as a function of the amount of light (or equivalent). The gain is almost always a linear variable, as such the gain is given simply as the ratio of the input and output signals. The dark-current is the amount of signal given out by the detector when there is no incident light (hence dark frame). In many detectors this can also be a function of time, for example in astronomical telescopes it is common to take a dark-frame of the same time as the planned light exposure. The gain and dark-frame for optical systems can also be established by using a series of [[neutral density filter]]s to give input/output signal information and applying a least squares fit to obtain the values for the dark current and gain.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A flat-field consists of two numbers for each pixel, the pixel's gain and its dark current (or [[dark frame]]). The pixel's gain is how the amount of signal given by the detector varies as a function of the amount of light (or equivalent). The gain is almost always a linear variable, as such the gain is given simply as the ratio of the input and output signals. The dark-current is the amount of signal given out by the detector when there is no incident light (hence dark frame). In many detectors this can also be a function of time, for example in astronomical telescopes it is common to take a dark-frame of the same time as the planned light exposure. The gain and dark-frame for optical systems can also be established by using a series of [[neutral density filter]]s to give input/output signal information and applying a least squares fit to obtain the values for the dark current and gain.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 18:</td> <td colspan="2" class="diff-lineno">Line 18:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* ''D'' = dark field or dark frame</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* ''D'' = dark field or dark frame</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* ''m'' = image-averaged value of (''F''−''D'')</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* ''m'' = image-averaged value of (''F''−''D'')</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* ''G'' = Gain = &lt;math&gt;m\over(F-D)&lt;/math&gt;&lt;ref&gt;{{cite web |url=http://www.princetoninstruments.com/cms/index.php/ccd-primer/152-flat-field-correction |<del style="font-weight: bold; text-decoration: none;">title</del>=Princeton Instruments <del style="font-weight: bold; text-decoration: none;">&amp;#124; </del>Flat Field Correction<del style="font-weight: bold; text-decoration: none;"> |website=www.princetoninstruments.com</del> |access-date=12 January 2022 |archive-url=https://web.archive.org/web/20130407013841/http://www.princetoninstruments.com/cms/index.php/ccd-primer/152-flat-field-correction |archive-date=7 April 2013 <del style="font-weight: bold; text-decoration: none;">|url-status=dead</del>}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* ''G'' = Gain = &lt;math&gt;m\over(F-D)&lt;/math&gt;&lt;ref&gt;{{cite web |url=http://www.princetoninstruments.com/cms/index.php/ccd-primer/152-flat-field-correction |<ins style="font-weight: bold; text-decoration: none;">website</ins>=Princeton Instruments <ins style="font-weight: bold; text-decoration: none;">|title=</ins>Flat Field Correction |access-date=12 January 2022 |archive-url=https://web.archive.org/web/20130407013841/http://www.princetoninstruments.com/cms/index.php/ccd-primer/152-flat-field-correction |archive-date=7 April 2013 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In this equation, capital letters are 2D matrices, and lowercase letters are scalars. All matrix operations are performed element-by-element.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In this equation, capital letters are 2D matrices, and lowercase letters are scalars. All matrix operations are performed element-by-element.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 52:</td> <td colspan="2" class="diff-lineno">Line 52:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Olsen, Doug.; Dou, Changyong.; Zhang, Xiaodong.; Hu, Lianbo.; Kim, Hojin.; Hildum, Edward. [http://www.mdpi.com/2072-4292/2/2/464/pdf Radiometric Calibration for AgCam]; Remote Sens. 2010, 2, 464-477</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Olsen, Doug.; Dou, Changyong.; Zhang, Xiaodong.; Hu, Lianbo.; Kim, Hojin.; Hildum, Edward. [http://www.mdpi.com/2072-4292/2/2/464/pdf Radiometric Calibration for AgCam]; Remote Sens. 2010, 2, 464-477</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |<del style="font-weight: bold; text-decoration: none;"> authors </del>=<del style="font-weight: bold; text-decoration: none;"> </del>V. Van Nieuwenhove<del style="font-weight: bold; text-decoration: none;">,</del> J. De Beenhouwer<del style="font-weight: bold; text-decoration: none;">,</del> F. De Carlo<del style="font-weight: bold; text-decoration: none;">,</del> L. Mancini<del style="font-weight: bold; text-decoration: none;">,</del> F. Marone<del style="font-weight: bold; text-decoration: none;">, and</del> J. Sijbers | doi = 10.1364/OE.23.027975 | pmid = 26480456 | title = Dynamic intensity normalization using eigen flat fields in X-ray imaging | journal = Optics Express | volume = 23 | issue = 21 | date = 2015 | pages = 27975–27989 |ref=DynFFC|bibcode = 2015OExpr..2327975V | url = https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A7681 | hdl = 10067/1302930151162165141 | hdl-access = free }}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal |<ins style="font-weight: bold; text-decoration: none;">author</ins>=V. Van Nieuwenhove <ins style="font-weight: bold; text-decoration: none;">|author2=</ins>J. De Beenhouwer <ins style="font-weight: bold; text-decoration: none;">|author3=</ins>F. De Carlo <ins style="font-weight: bold; text-decoration: none;">|author4=</ins>L. Mancini <ins style="font-weight: bold; text-decoration: none;">|author5=</ins>F. Marone <ins style="font-weight: bold; text-decoration: none;">|author6=</ins>J. Sijbers | doi = 10.1364/OE.23.027975 | pmid = 26480456 | title = Dynamic intensity normalization using eigen flat fields in X-ray imaging | journal = Optics Express | volume = 23 | issue = 21 | date = 2015 | pages = 27975–27989 |ref=DynFFC|bibcode = 2015OExpr..2327975V | url = https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A7681 | hdl = 10067/1302930151162165141 | hdl-access = free }}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== External links ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== External links ==</div></td> </tr> </table> Trappist the monk https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1174614232&oldid=prev JimRenge: moved source 2023-09-09T16:27:36Z <p>moved source</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:27, 9 September 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 49:</td> <td colspan="2" class="diff-lineno">Line 49:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_3_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_1_0_lhs"></a>*Olsen, Doug.; Dou, Changyong.; Zhang, Xiaodong.; Hu, Lianbo.; Kim, Hojin.; Hildum, Edward. [http://www.mdpi.com/2072-4292/2/2/464/pdf Radiometric Calibration for AgCam]; Remote Sens. 2010, 2, 464-477</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_1_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_3_0_rhs"></a>*Olsen, Doug.; Dou, Changyong.; Zhang, Xiaodong.; Hu, Lianbo.; Kim, Hojin.; Hildum, Edward. [http://www.mdpi.com/2072-4292/2/2/464/pdf Radiometric Calibration for AgCam]; Remote Sens. 2010, 2, 464-477</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal | authors = V. Van Nieuwenhove, J. De Beenhouwer, F. De Carlo, L. Mancini, F. Marone, and J. Sijbers | doi = 10.1364/OE.23.027975 | pmid = 26480456 | title = Dynamic intensity normalization using eigen flat fields in X-ray imaging | journal = Optics Express | volume = 23 | issue = 21 | date = 2015 | pages = 27975–27989 |ref=DynFFC|bibcode = 2015OExpr..2327975V | url = https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A7681 | hdl = 10067/1302930151162165141 | hdl-access = free }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal | authors = V. Van Nieuwenhove, J. De Beenhouwer, F. De Carlo, L. Mancini, F. Marone, and J. Sijbers | doi = 10.1364/OE.23.027975 | pmid = 26480456 | title = Dynamic intensity normalization using eigen flat fields in X-ray imaging | journal = Optics Express | volume = 23 | issue = 21 | date = 2015 | pages = 27975–27989 |ref=DynFFC|bibcode = 2015OExpr..2327975V | url = https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A7681 | hdl = 10067/1302930151162165141 | hdl-access = free }}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> JimRenge https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1172055673&oldid=prev JimRenge: Restored revision 1168347175 by OlliverWithDoubleL (talk): I see no improvement 2023-08-24T17:25:29Z <p>Restored revision 1168347175 by <a href="/wiki/Special:Contributions/OlliverWithDoubleL" title="Special:Contributions/OlliverWithDoubleL">OlliverWithDoubleL</a> (<a href="/wiki/User_talk:OlliverWithDoubleL" title="User talk:OlliverWithDoubleL">talk</a>): I see no improvement</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 17:25, 24 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt; N = \frac{(P-D)}{(F-D)}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt; N = \frac{(P-D)}{(F-D)}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Dynamic flat field correction<del style="font-weight: bold; text-decoration: none;"> method</del> ==</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Dynamic flat field correction ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>While conventional flat field correction is an elegant and easy procedure that largely reduces fixed-pattern noise, it heavily relies on the stationarity of the X-ray beam, scintillator response and CCD sensitivity. In practice, <del style="font-weight: bold; text-decoration: none;">but</del>, this assumption is only approximately met. Indeed, detector elements are characterized by intensity dependent, nonlinear response functions and the incident beam often shows time dependent non-uniformities, which render conventional FFC inadequate. In synchrotron X-ray tomography, many factors may cause flat field variations: instability of the bending magnets of the synchrotron, temperature variations due to the water cooling in mirrors and the monochromator, or vibrations of the scintillator and other beamline components. The latter is responsible for the biggest variations in the flat fields. To deal with such variations, a '''''dynamic''''' '''flat field correction''' procedure can be employed that estimates a flat field for each individual projection. Through principal component analysis of a set of flat fields, which are acquired prior and/or posterior to the actual scan, eigen flat fields can be computed. A linear combination of the most important eigen flat fields can then be used to individually normalize each X-ray projection:&lt;ref name="VanNieuwenhove" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>While conventional flat field correction is an elegant and easy procedure that largely reduces fixed-pattern noise, it heavily relies on the stationarity of the X-ray beam, scintillator response and CCD sensitivity. In practice, <ins style="font-weight: bold; text-decoration: none;">however</ins>, this assumption is only approximately met. Indeed, detector elements are characterized by intensity dependent, nonlinear response functions and the incident beam often shows time dependent non-uniformities, which render conventional FFC inadequate. In synchrotron X-ray tomography, many factors may cause flat field variations: instability of the bending magnets of the synchrotron, temperature variations due to the water cooling in mirrors and the monochromator, or vibrations of the scintillator and other beamline components. The latter is responsible for the biggest variations in the flat fields. To deal with such variations, a '''''dynamic''''' '''flat field correction''' procedure can be employed that estimates a flat field for each individual projection. Through principal component analysis of a set of flat fields, which are acquired prior and/or posterior to the actual scan, eigen flat fields can be computed. A linear combination of the most important eigen flat fields can then be used to individually normalize each X-ray projection:&lt;ref name="VanNieuwenhove" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt;N_j = \frac{P_j - \bar D}{\bar F + \sum_k w_{jk}u_k - \bar D}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt;N_j = \frac{P_j - \bar D}{\bar F + \sum_k w_{jk}u_k - \bar D}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where</div></td> </tr> </table> JimRenge https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1172003471&oldid=prev 212.174.75.78: /* Dynamic flat field correction */ 2023-08-24T10:51:15Z <p><span class="autocomment">Dynamic flat field correction</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:51, 24 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt; N = \frac{(P-D)}{(F-D)}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt; N = \frac{(P-D)}{(F-D)}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Dynamic flat field correction ==</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Dynamic flat field correction<ins style="font-weight: bold; text-decoration: none;"> method</ins> ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>While <del style="font-weight: bold; text-decoration: none;">coventional</del> flat field correction is an elegant and easy procedure that largely reduces fixed-pattern noise, it heavily relies on the stationarity of the X-ray beam, scintillator response and CCD sensitivity. In practice, <del style="font-weight: bold; text-decoration: none;">however</del>, this assumption is only approximately met. Indeed, detector elements are characterized by intensity dependent, nonlinear response functions and the incident beam often shows time dependent non-uniformities, which render conventional FFC inadequate. In synchrotron X-ray tomography, many factors may cause flat field variations: instability of the bending magnets of the synchrotron, temperature variations due to the water cooling in mirrors and the monochromator, or vibrations of the scintillator and other beamline components. The latter is responsible for the biggest variations in the flat fields. To deal with such variations, a '''''dynamic''''' '''flat field correction''' procedure can be employed that estimates a flat field for each individual projection. Through principal component analysis of a set of flat fields, which are acquired prior and/or posterior to the actual scan, eigen flat fields can be computed. A linear combination of the most important eigen flat fields can then be used to individually normalize each X-ray projection:&lt;ref name="VanNieuwenhove" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>While <ins style="font-weight: bold; text-decoration: none;">conventional</ins> flat field correction is an elegant and easy procedure that largely reduces fixed-pattern noise, it heavily relies on the stationarity of the X-ray beam, scintillator response and CCD sensitivity. In practice, <ins style="font-weight: bold; text-decoration: none;">but</ins>, this assumption is only approximately met. Indeed, detector elements are characterized by intensity dependent, nonlinear response functions and the incident beam often shows time dependent non-uniformities, which render conventional FFC inadequate. In synchrotron X-ray tomography, many factors may cause flat field variations: instability of the bending magnets of the synchrotron, temperature variations due to the water cooling in mirrors and the monochromator, or vibrations of the scintillator and other beamline components. The latter is responsible for the biggest variations in the flat fields. To deal with such variations, a '''''dynamic''''' '''flat field correction''' procedure can be employed that estimates a flat field for each individual projection. Through principal component analysis of a set of flat fields, which are acquired prior and/or posterior to the actual scan, eigen flat fields can be computed. A linear combination of the most important eigen flat fields can then be used to individually normalize each X-ray projection:&lt;ref name="VanNieuwenhove" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt;N_j = \frac{P_j - \bar D}{\bar F + \sum_k w_{jk}u_k - \bar D}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt;N_j = \frac{P_j - \bar D}{\bar F + \sum_k w_{jk}u_k - \bar D}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where</div></td> </tr> </table> 212.174.75.78 https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1172003370&oldid=prev 212.174.75.78: /* Dynamic flat field correction */ 2023-08-24T10:50:29Z <p><span class="autocomment">Dynamic flat field correction</span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:50, 24 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 31:</td> <td colspan="2" class="diff-lineno">Line 31:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Dynamic flat field correction ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Dynamic flat field correction ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>While <del style="font-weight: bold; text-decoration: none;">conventional</del> flat field correction is an elegant and easy procedure that largely reduces fixed-pattern noise, it heavily relies on the stationarity of the X-ray beam, scintillator response and CCD sensitivity. In practice, however, this assumption is only approximately met. Indeed, detector elements are characterized by intensity dependent, nonlinear response functions and the incident beam often shows time dependent non-uniformities, which render conventional FFC inadequate. In synchrotron X-ray tomography, many factors may cause flat field variations: instability of the bending magnets of the synchrotron, temperature variations due to the water cooling in mirrors and the monochromator, or vibrations of the scintillator and other beamline components. The latter is responsible for the biggest variations in the flat fields. To deal with such variations, a '''''dynamic''''' '''flat field correction''' procedure can be employed that estimates a flat field for each individual projection. Through principal component analysis of a set of flat fields, which are acquired prior and/or posterior to the actual scan, eigen flat fields can be computed. A linear combination of the most important eigen flat fields can then be used to individually normalize each X-ray projection:&lt;ref name="VanNieuwenhove" /&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>While <ins style="font-weight: bold; text-decoration: none;">coventional</ins> flat field correction is an elegant and easy procedure that largely reduces fixed-pattern noise, it heavily relies on the stationarity of the X-ray beam, scintillator response and CCD sensitivity. In practice, however, this assumption is only approximately met. Indeed, detector elements are characterized by intensity dependent, nonlinear response functions and the incident beam often shows time dependent non-uniformities, which render conventional FFC inadequate. In synchrotron X-ray tomography, many factors may cause flat field variations: instability of the bending magnets of the synchrotron, temperature variations due to the water cooling in mirrors and the monochromator, or vibrations of the scintillator and other beamline components. The latter is responsible for the biggest variations in the flat fields. To deal with such variations, a '''''dynamic''''' '''flat field correction''' procedure can be employed that estimates a flat field for each individual projection. Through principal component analysis of a set of flat fields, which are acquired prior and/or posterior to the actual scan, eigen flat fields can be computed. A linear combination of the most important eigen flat fields can then be used to individually normalize each X-ray projection:&lt;ref name="VanNieuwenhove" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt;N_j = \frac{P_j - \bar D}{\bar F + \sum_k w_{jk}u_k - \bar D}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>&lt;math display="block"&gt;N_j = \frac{P_j - \bar D}{\bar F + \sum_k w_{jk}u_k - \bar D}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>where</div></td> </tr> </table> 212.174.75.78 https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1168347175&oldid=prev OlliverWithDoubleL at 07:17, 2 August 2023 2023-08-02T07:17:41Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:17, 2 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Digital imaging calibration technique}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish|text=[[Field flattener lens]], which improves focus uniformity}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish|text=[[Field flattener lens]], which improves focus uniformity}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Woy Woy Channel - Vignetted.jpg|thumb|This picture is darker at the edges. This variation is called [[vignetting]], and can be corrected by selectively brightening the perimeter of the image.]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Woy Woy Channel - Vignetted.jpg|thumb|This picture is darker at the edges. This variation is called [[vignetting]], and can be corrected by selectively brightening the perimeter of the image.]]</div></td> </tr> </table> OlliverWithDoubleL https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1168136534&oldid=prev Fgnievinski at 01:20, 1 August 2023 2023-08-01T01:20:05Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:20, 1 August 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish|text=[[<del style="font-weight: bold; text-decoration: none;">Petzval</del> <del style="font-weight: bold; text-decoration: none;">field</del> <del style="font-weight: bold; text-decoration: none;">curvature</del>]], which <del style="font-weight: bold; text-decoration: none;">refers to</del> focus uniformity}}</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish|text=[[<ins style="font-weight: bold; text-decoration: none;">Field</ins> <ins style="font-weight: bold; text-decoration: none;">flattener</ins> <ins style="font-weight: bold; text-decoration: none;">lens</ins>]], which <ins style="font-weight: bold; text-decoration: none;">improves</ins> focus uniformity}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Woy Woy Channel - Vignetted.jpg|thumb|This picture is darker at the edges. This variation is called [[vignetting]], and can be corrected by selectively brightening the perimeter of the image.]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Woy Woy Channel - Vignetted.jpg|thumb|This picture is darker at the edges. This variation is called [[vignetting]], and can be corrected by selectively brightening the perimeter of the image.]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Flat-field correction''' (FFC) is a<del style="font-weight: bold; text-decoration: none;"> technique used to improve quality in</del> [[digital imaging]]<del style="font-weight: bold; text-decoration: none;">.</del> <del style="font-weight: bold; text-decoration: none;">It</del> <del style="font-weight: bold; text-decoration: none;">cancels</del> the <del style="font-weight: bold; text-decoration: none;">effects of </del>image <del style="font-weight: bold; text-decoration: none;">artifacts caused by variations in the</del> pixel-to-pixel sensitivity<del style="font-weight: bold; text-decoration: none;"> of the detector</del> and<del style="font-weight: bold; text-decoration: none;"> by</del> distortions in the optical path. It is a standard calibration procedure in everything from personal [[digital camera]]s to large telescopes.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Flat-field correction''' (<ins style="font-weight: bold; text-decoration: none;">'''</ins>FFC<ins style="font-weight: bold; text-decoration: none;">'''</ins>) is a [[digital imaging]] <ins style="font-weight: bold; text-decoration: none;">technique</ins> <ins style="font-weight: bold; text-decoration: none;">to</ins> <ins style="font-weight: bold; text-decoration: none;">mitigate</ins> the <ins style="font-weight: bold; text-decoration: none;">[[</ins>image <ins style="font-weight: bold; text-decoration: none;">detector]]</ins> pixel-to-pixel sensitivity and distortions in the <ins style="font-weight: bold; text-decoration: none;">[[</ins>optical path<ins style="font-weight: bold; text-decoration: none;">]]</ins>. It is a standard calibration procedure in everything from personal [[digital camera]]s to large telescopes.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Overview==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Overview==</div></td> </tr> </table> Fgnievinski https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1166419450&oldid=prev JimRenge: + Further reading section 2023-07-21T12:26:52Z <p>+ Further reading section</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:26, 21 July 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 49:</td> <td colspan="2" class="diff-lineno">Line 49:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{reflist}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Olsen, Doug.; Dou, Changyong.; Zhang, Xiaodong.; Hu, Lianbo.; Kim, Hojin.; Hildum, Edward. [http://www.mdpi.com/2072-4292/2/2/464/pdf Radiometric Calibration for AgCam]; Remote Sens. 2010, 2, 464-477</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*Olsen, Doug.; Dou, Changyong.; Zhang, Xiaodong.; Hu, Lianbo.; Kim, Hojin.; Hildum, Edward. [http://www.mdpi.com/2072-4292/2/2/464/pdf Radiometric Calibration for AgCam]; Remote Sens. 2010, 2, 464-477</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==Further reading==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal | authors = V. Van Nieuwenhove, J. De Beenhouwer, F. De Carlo, L. Mancini, F. Marone, and J. Sijbers | doi = 10.1364/OE.23.027975 | pmid = 26480456 | title = Dynamic intensity normalization using eigen flat fields in X-ray imaging | journal = Optics Express | volume = 23 | issue = 21 | date = 2015 | pages = 27975–27989 |ref=DynFFC|bibcode = 2015OExpr..2327975V | url = https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A7681 | hdl = 10067/1302930151162165141 | hdl-access = free }}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*{{cite journal | authors = V. Van Nieuwenhove, J. De Beenhouwer, F. De Carlo, L. Mancini, F. Marone, and J. Sijbers | doi = 10.1364/OE.23.027975 | pmid = 26480456 | title = Dynamic intensity normalization using eigen flat fields in X-ray imaging | journal = Optics Express | volume = 23 | issue = 21 | date = 2015 | pages = 27975–27989 |ref=DynFFC|bibcode = 2015OExpr..2327975V | url = https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A7681 | hdl = 10067/1302930151162165141 | hdl-access = free }}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> JimRenge https://en.wikipedia.org/w/index.php?title=Flat-field_correction&diff=1166398864&oldid=prev 193.62.223.243 at 08:27, 21 July 2023 2023-07-21T08:27:43Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:27, 21 July 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish|text=[[Petzval field curvature]], which refers to focus uniformity}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Distinguish|text=[[Petzval field curvature]], which refers to focus uniformity}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Woy Woy Channel - Vignetted.jpg|thumb|<del style="font-weight: bold; text-decoration: none;">The</del> <del style="font-weight: bold; text-decoration: none;">brightness</del> variation <del style="font-weight: bold; text-decoration: none;">due</del> <del style="font-weight: bold; text-decoration: none;">to</del> [[vignetting]], <del style="font-weight: bold; text-decoration: none;">as shown here,</del> can be corrected by selectively brightening the perimeter of the image.]]</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Woy Woy Channel - Vignetted.jpg|thumb|<ins style="font-weight: bold; text-decoration: none;">This</ins> <ins style="font-weight: bold; text-decoration: none;">picture is darker at the edges. This</ins> variation <ins style="font-weight: bold; text-decoration: none;">is</ins> <ins style="font-weight: bold; text-decoration: none;">called</ins> [[vignetting]], <ins style="font-weight: bold; text-decoration: none;">and</ins> can be corrected by selectively brightening the perimeter of the image.]]</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Flat-field correction''' (FFC) is a technique used to improve quality in [[digital imaging]]. It cancels the effects of image artifacts caused by variations in the pixel-to-pixel sensitivity of the detector and by distortions in the optical path. It is a standard calibration procedure in everything from personal [[digital camera]]s to large telescopes.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Flat-field correction''' (FFC) is a technique used to improve quality in [[digital imaging]]. It cancels the effects of image artifacts caused by variations in the pixel-to-pixel sensitivity of the detector and by distortions in the optical path. It is a standard calibration procedure in everything from personal [[digital camera]]s to large telescopes.</div></td> </tr> </table> 193.62.223.243